Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2023

Application of Bio-Inspired Optimization Techniques for Wind Power Forecasting

Authors
Ferreira, J; Puga, R; Boaventura, J; Abtahi, A; Santos, S;

Publication
International Journal of Computer Information Systems and Industrial Management Applications

Abstract
As the need for replacing fossil and other non-renewable energy sources with renewables becomes more critical and urgent, wind energy appears to be among the two or three best choices for the short and medium time frames. The dominance of wind energy as the first choice in many regions, leads to an increasing impact of wind power quality on the overall grid. Wind energy’s inherent intermittent nature, both in intensity and longevity, could be an impediment to its adoption unless utility operators have the tools to anticipate the impact and integrate wind resources seamlessly by increasing or reducing its contribution to the overall capacity of the grid. The wind forecasting science is well established and has been the subject of serious study in multiple fields such as fluid dynamics, statistical analysis and numerical simulation and modeling. With the renewed interest and dependence on wind as a major energy source, these efforts have increased exponentially. One of the areas that shows great promise in developing improved forecasting tools, is the category of “Biological Inspired Optimization Techniques. The study presented in this paper is the result of a study to survey and assess an array of forecasting models and algorithms. © MIR Labs, www.mirlabs.net/ijcisim/index.html

2023

TRANSFER-LEARNING ON LAND USE AND LAND COVER CLASSIFICATION

Authors
Carneiro, G; Teixeira, A; Cunha, A; Sousa, J;

Publication
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM

Abstract
In this study, we evaluated the use of small pre-trained 3D Convolutional Neural Networks (CNN) on land use and land cover (LULC) slide-window-based classification. We pre-trained the small models in a dataset with origin in the Eurosat dataset and evaluated the benefits of the transfer-learning plus fine-tuning for four different regions using Sentinel-2 L1C imagery (bands of 10 and 20m of spatial resolution), comparing the results to pre-trained models and trained from scratch. The models achieved an F1 Score of between 0.69-0.80 without significative change when pre-training the model. However, for small datasets, pre-training the model improved the classification by up to 3%.

2023

Sifu Reloaded: An Open-Source Gamified Web-Based CyberSecurity Awareness Platform (Short Paper)

Authors
Paiva, JC; Queirós, R; Gasiba, T;

Publication
4th International Computer Programming Education Conference, ICPEC 2023, June 26-28, 2023, Vila do Conde, Portugal

Abstract
Malicious actors can cause severe damage by exploiting software vulnerabilities. In industrial settings, where critical infrastructures rely on software, handling these vulnerabilities with utmost care is crucial to prevent catastrophic consequences. For this purpose, a cybersecurity awareness platform called Sifu was created. This platform automatically assesses challenges to verify its compliance to secure coding guidelines. Using an artificial intelligence method, an interactive component provides players with solution-guiding hints. This paper presents an improved version of the Sifu platform, which evolves the tool in the following aspects: architecture, data model and user interface. The new platform separates the server and client-side using a REST API architecture. It also accommodates an intrinsic and richer layer of gamification, which explores the concept of game rooms at an organizational and gamification level. Finally, it offers an improved interactive training experience for individuals and organizations through a responsive and intuitive single-page web application. © José Carlos Paiva, Ricardo Queirós, and Tiago Gasiba; licensed under Creative Commons License CC-BY 4.0.

2023

Artificial Intelligence in Veterinary Imaging: An Overview

Authors
Pereira, AI; Franco Goncalo, P; Leite, P; Ribeiro, A; Alves Pimenta, MS; Colaco, B; Loureiro, C; Goncalves, L; Filipe, V; Ginja, M;

Publication
VETERINARY SCIENCES

Abstract
Artificial intelligence is emerging in the field of veterinary medical imaging. The development of this area in medicine has introduced new concepts and scientific terminologies that professionals must be able to have some understanding of, such as the following: machine learning, deep learning, convolutional neural networks, and transfer learning. This paper offers veterinary professionals an overview of artificial intelligence, machine learning, and deep learning focused on imaging diagnosis. A review is provided of the existing literature on artificial intelligence in veterinary imaging of small animals, together with a brief conclusion.Artificial intelligence and machine learning have been increasingly used in the medical imaging field in the past few years. The evaluation of medical images is very subjective and complex, and therefore the application of artificial intelligence and deep learning methods to automatize the analysis process would be very beneficial. A lot of researchers have been applying these methods to image analysis diagnosis, developing software capable of assisting veterinary doctors or radiologists in their daily practice. This article details the main methodologies used to develop software applications on machine learning and how veterinarians with an interest in this field can benefit from such methodologies. The main goal of this study is to offer veterinary professionals a simple guide to enable them to understand the basics of artificial intelligence and machine learning and the concepts such as deep learning, convolutional neural networks, transfer learning, and the performance evaluation method. The language is adapted for medical technicians, and the work already published in this field is reviewed for application in the imaging diagnosis of different animal body systems: musculoskeletal, thoracic, nervous, and abdominal.

2023

Bi-level stochastic energy trading model for technical virtual power plants considering various renewable energy sources, energy storage systems and electric vehicles

Authors
Gough, M; Santos, SF; Javadi, MS; Home-Ortiz, JM; Castro, R; Catalao, JPS;

Publication
JOURNAL OF ENERGY STORAGE

Abstract
The ongoing transition of the energy system towards being low-carbon, digitized and distributed is accelerating. Distributed Energy Resources (DERs) are playing a major role in this transition. These DERs can be aggregated and controlled by Virtual Power Plants (VPPs) to participate in energy markets and make full use of the potential of DERs. Many existing VPP models solely focus on the financial impact of aggregating DERs and do not consider the technical limitations of the distribution system. This may result in technically unfeasible solutions to DERs operations. This paper presents an expanded VPP model, termed the Technical Virtual Power Plant (TVPP), which explicitly considers the technical constraints of the network to provide operating schedules that are both economically beneficial to the DERs and technically feasible. The TVPP model is formulated as a bi-level sto-chastic mixed-integer linear programming (MILP) optimization model. Two objective functions are used, the upper level focuses on minimizing the amount of power imported into the TVPP from the external grid, while the lower level is concerned with optimally scheduling a mixture of DERs to increase the profit of the TVPP operator. The model considers three TVPPs and allows for energy trading among the TVPPs. The model is applied to several case studies based on the IEEE 119-node test system. Results show improved DERs operating schedules, improved system reliability and an increase in demand response engagement. Finally, energy trading among the TVPP is shown to further reduce the costs of the TVPP and power imported from the upstream electrical network.

2023

A Biomedical Entity Extraction Pipeline for Oncology Health Records in Portuguese

Authors
Sousa, H; Pasquali, A; Jorge, A; Santos, CS; Lopes, MA;

Publication
38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023

Abstract
Textual health records of cancer patients are usually protracted and highly unstructured, making it very time-consuming for health professionals to get a complete overview of the patient's therapeutic course. As such limitations can lead to suboptimal and/or inefficient treatment procedures, healthcare providers would greatly benefit from a system that effectively summarizes the information of those records. With the advent of deep neural models, this objective has been partially attained for English clinical texts, however, the research community still lacks an effective solution for languages with limited resources. In this paper, we present the approach we developed to extract procedures, drugs, and diseases from oncology health records written in European Portuguese. This project was conducted in collaboration with the Portuguese Institute for Oncology which, besides holding over 10 years of duly protected medical records, also provided oncologist expertise throughout the development of the project. Since there is no annotated corpus for biomedical entity extraction in Portuguese, we also present the strategy we followed in annotating the corpus for the development of the models. The final models, which combined a neural architecture with entity linking, achieved..1 scores of 88.6, 95.0, and 55.8 per cent in the mention extraction of procedures, drugs, and diseases, respectively.

  • 440
  • 4353