2025
Authors
Guo, J; Chong, CF; Abreu, PH; Mao, C; Li, J; Lam, C; Ng, K;
Publication
Engineering Applications of Artificial Intelligence
Abstract
Solar photovoltaic technology has grown significantly as a renewable energy, with unmanned aerial vehicles equipped with thermal infrared cameras effectively inspecting solar panels. However, long-distance capture and low-resolution infrared cameras make the targets small, complicating feature extraction. Additionally, the large number of normal photovoltaic modules results in a significant imbalance in the dataset. Furthermore, limited computing resources on unmanned aerial vehicles further challenge real-time fault classification. These factors limit the performance of current fault classification systems for solar panels. The multi-scale and multi-branch Reparameterization of convolutional neural networks can improve model performance while reducing computational demands at the deployment stage, making them suitable for practical applications. This study proposes an efficient framework based on reparameterization for infrared solar panel fault classification. We propose a Proportional Balanced Weight asymmetric loss function to address the class imbalance and employ multi-branch, multi-scale convolutional kernels for extracting tiny features from low-resolution images. The designed models were trained with Exponential Moving Average for better performance and reparameterized for efficient deployment. We evaluated the designed models using the Infrared Solar Module dataset. The proposed framework achieved an accuracy of 83.8% for the 12-Class classification task and 74.0% for the 11-Class task, both without data augmentation to enhance generalization. The accuracy improvements of up to 16.4% and F1-Score gains of up to 18.7%. Additionally, we achieved an inference speed that is 3.4 times faster than the training speed, while maintaining high fault classification performance. © 2025 Elsevier Ltd
2025
Authors
Mangussi, AD; Pereira, RC; Abreu, PH; Lorena, AC;
Publication
INTELLIGENT SYSTEMS, BRACIS 2024, PT I
Abstract
In real-world scenarios, a wide variety of datasets contain inconsistencies. One example of such inconsistency is missing data (MD), which refers to the absence of information in one or more variables. Missing imputation strategies emerged as a possible solution for addressing this problem, which can replace the missing values based on mean, median, or Machine Learning (ML) techniques. The performance of such strategies depends on multiple factors. One factor that influences the missing value imputation (MVI) methods is the presence of noisy instances, described as anything that obscures the relationship between the features of an instance and its class, having an adversarial effect. However, the interaction between MD and noisy instances has received little attention in the literature. This work fills this gap by investigating missing and noisy data interplay. Our experimental setup begins with generating missingness under the Missing Not at Random (MNAR) mechanism in a multivariate scenario and performing imputation using seven state-of-the-art MVI methods. Our methodology involves applying a noise filter before performing the imputation task and evaluating the quality of the imputation directly. Additionally, we measure the classification performance with the new estimates. This approach is applied to both synthetic data and 11 real-world datasets. The effects of noise filtering before imputation are evaluated. The results show that noise preprocessing before the imputation task improves the imputation quality and the classification performance for imputed datasets.
2025
Authors
Couto, F; Curado Malta, M;
Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
This paper contributes to developing a Method for Creating Persona Templates (MCPT), addressing a significant gap in user-centred design methodologies. Utilising qualitative data collection and analysis techniques, MCPT offers a systematic approach to developing robust and context-oriented persona templates. MCPT was created by applying the Design Science Research (DSR) methodology, and it incorporates multiple iterations for template refinement and validation among project stakeholders; all of the proposed steps of this method were based on theoretical contributions. Furthermore, MCPT was tested and refined within a real-life R&D project focusing on developing a digital platform e-marketplace for short agrifood supply chains in two iteration cycles. MCPT fills a critical void in persona research by providing detailed instructions for each step of template development. By involving the target audience, users, and project stakeholders, MCPT adds rigour to the persona creation process, enhancing the quality and relevance of personae casts. This paper contributes to the body of knowledge by offering an initial proposal of a comprehensive method for creating persona templates within diverse projects and contexts. Further research should explore MCPT’s adaptability to different settings and projects, thus refining its effectiveness and extending its utility in user-centred design practices. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Authors
Mangussi, AD; Santos, MS; Lopes, FL; Pereira, RC; Lorena, AC; Abreu, PH;
Publication
NEUROCOMPUTING
Abstract
Missing data is characterized by the presence of absent values in data (i.e., missing values) and it is currently categorized into three different mechanisms: Missing Completely at Random, Missing At Random, and Missing Not At Random. When performing missing data experiments and evaluating techniques to handle absent values, these mechanisms are often artificially generated (a process referred to as data amputation) to assess the robustness and behavior of the used methods. Due to the lack of a standard benchmark for data amputation, different implementations of the mechanisms are used in related research (some are often not disclaimed), preventing the reproducibility of results and leading to an unfair or inaccurate comparison between existing and new methods. Moreover, for users outside the field, experimenting with missing data or simulating the appearance of missing values in real-world domains is unfeasible, impairing stress testing in machine learning systems. This work introduces mdatagen, an open source Python library for the generation of missing data mechanisms across 20 distinct scenarios, following different univariate and multivariate implementations of the established missing mechanisms. The package therefore fosters reproducible results across missing data experiments and enables the simulation of artificial missing data under flexible configurations, making it very versatile to mimic several real-world applications involving missing data. The source code and detailed documentation for mdatagen are available at https://github.com/ArthurMangussi/pymdatagen.
2025
Authors
Santos, JC; Tomás Pereira Alexandre, H; Seoane Santos, M; Henriques Abreu, P;
Publication
ACM Transactions on Computing for Healthcare
Abstract
2025
Authors
Silva, RP; Mamede, HS; Santos, V;
Publication
JOURNAL OF INNOVATION & KNOWLEDGE
Abstract
Scientific research in digital transformation is expanding in scope, quantity, and relevance, bringing forth diverse perspectives on which factors and specific dimensions-such as organizational structure, culture, and technological readiness-affect the success of digital transformation initiatives. Numerous studies have proposed mechanisms to assess an organization's maturity through digital transformation across various models. Some of these models focus on external influences, others on internal factors, or both. Although these assessments provide valuable insights into a company's transformation state, they often lack consistency, and recent research highlights key gaps. Specifically, many models primarily reflect the views of senior management on the general progress of digital transformation rather than on measurable outcomes. Moreover, these models tend to target large enterprises, overlooking small and medium enterprises (SMEs), which are crucial to economic growth yet face unique challenges, such as limited resources and expertise. Our study addresses these gaps by concentrating on SMEs and introducing a novel approach to assessing digital transformation readiness-a metric that reflects how prepared an organization is to optimize transformation outcomes. Following design science research methodology, we develop a model that centers on the perspectives of general employees, offering companies an in-depth view of their readiness across 20 dimensions. Each dimension is evaluated through behaviors indicative of the highest level of digital transformation readiness, helping companies identify areas to maximize potential benefits. Our model focuses not on technological quality but on the degree to which behaviors essential for leveraging technology and innovative business models are integrated within the organization.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.