2024
Authors
Silva, R; Pereira, P; Matos, A; Pinto, A;
Publication
Oceans Conference Record (IEEE)
Abstract
The underwater domain presents a myriad of challenges for perception systems that must be overcome to achieve accurate object detection and recognition. To augment the performance and safety of existing solutions for intricate O&M (Operations and Maintenance) procedures, AUVs must perceive the surroundings and locate potential objects of interest based on the perceived information. A depth gradient methodology is employed to survey the seabed using a multibeam sonar to perform a coarse reconstruction of the scenario that it later used to locate and identify foreign objects. This could include rocks, debris, wreckage, or other objects that may pose potential exploratory interest. First results show that the proposed method was able to detect 100 % of the objects present in the scenario with an average chamfer distance error of 0.0238m between models and respective reconstruction. © 2024 IEEE.
2024
Authors
Kumar, R; Mendes-moreira, J; Chandra, J;
Publication
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA
Abstract
Traffic forecasting problems involve jointly modeling the non-linear spatio-temporal dependencies at different scales. While graph neural network models have been effectively used to capture the non-linear spatial dependencies, capturing the dynamic spatial dependencies between the locations remains a major challenge. The errors in capturing such dependencies propagate in modeling the temporal dependencies between the locations, thereby severely affecting the performance of long-term predictions. While transformer-based mechanisms have been recently proposed for capturing the dynamic spatial dependencies, these methods are susceptible to fluctuations in data brought on by unforeseen events like traffic congestion and accidents. To mitigate these issues we propose an improvised spatio-temporal parallel transformer (STPT) based model for traffic prediction that uses multiple adjacency graphs passed through a pair of coupled graph transformer- convolution network units, operating in parallel, to generate more noise-resilient embeddings. We conduct extensive experiments on 4 real-world traffic datasets and compare the performance of STPT with several state-of-the-art baselines, in terms of measures like RMSE, MAE, and MAPE. We find that using STPT improves the performance by around 10 - 34% as compared to the baselines. We also investigate the applicability of the model on other spatio-temporal data in other domains. We use a Covid-19 dataset to predict the number of future occurrences in different regions from a given set of historical occurrences. The results demonstrate the superiority of our model for such datasets.
2024
Authors
Alcoforado, A; Ferraz, TP; Bustos, E; Oliveira, AS; Gerber, R; Santoro, GLDM; Fama, IC; Veloso, BM; Siqueira, FL; Costa, AHR;
Publication
Estudos Avancados
Abstract
One of the principles of digital democracy is to actively inform citizens and mobilize them to participate in the political debate. This paper introduces a tool that processes public political documents to make information accessible to citizens and specific professional groups. In particular, we investigate and develop artificial intelligence techniques for text mining from the Portuguese Diário da Assembleia da República to partition, analyze, extract and synthesize information contained in the minutes of parliamentary sessions. We also developed dashboards to show the extracted information in a simple and visual way, such as summaries of speeches and topics discussed. Our main objective is to increase transparency and accountability between elected officials and voters, rather than characterizing political behavior. © (2024), (SciELO-Scientific Electronic Library Online). All Rights Reserved.
2024
Authors
adrien.becue@gmail.com, B; Gama, J; Quelhas Brito, P;
Publication
Abstract
2024
Authors
Gomes, I; Teixeira, LF; van Rijn, JN; Soares, C; Restivo, A; Cunha, L; Santos, M;
Publication
CoRR
Abstract
2024
Authors
Monteiro, AC; Carvalhais, M; Torres, R;
Publication
Electronic Workshops in Computing
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.