Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

An Educational Robotics Competition – The Robotics@ISEP Open Experience

Authors
Manuel F. Silva; André Dias; Pedro Guedes; Ramiro Barbosa; Jorge Estrela; André Moura; Vítor Cerqueira;

Publication
2025 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC)

Abstract

2025

Digital assessment of plant diseases: A critical review and analysis of optical sensing technologies for early plant disease diagnosis

Authors
Pereira, MR; Tosin, R; dos Santos, FN; Tavares, F; Cunha, M;

Publication
Computers and Electronics in Agriculture

Abstract
The present critical literature review describes the state-of-the-art innovative proximal (ground-based) solutions for plant disease diagnosis, suitable for promoting more precise and efficient phytosanitary measures. Research and development of new sensors for this purpose are currently a challenge. Present procedures and diagnosis techniques depend on visual characteristics and symptoms to be initiated and applied, compromising an early intervention. Also, these methods were designed to confirm the presence of pathogens, which did not have the required high throughput and speed to support real-time agronomic decisions in field extensions. Proximal sensor-based systems are a reasonable tool for an efficient and economic disease assessment. This work focused on identifying the application of optical and spectroscopic sensors as a tool for disease diagnosis. Biophoton emission, fluorescence spectroscopy, laser-induced breakdown spectroscopy, multi- and hyperspectral spectroscopy (HS), nuclear magnetic resonance spectroscopy, Raman spectroscopy, RGB imaging, thermography, volatile organic compounds assessment, and X-ray fluorescence were described due to their relevant potential. Nevertheless, some techniques revealed a low technology readiness level (TRL). The main conclusions identify HS, single and multi-spatial point observation, as the most applied methods for early plant disease diagnosis studies (88%), combined with distinct feature selection (FeS), dimensionality reduction (DR), and modeling techniques. Vegetation indices (28%) and principal component analysis (19%) were the most popular FeS and DR approaches, highlighting the most relevant wavelengths contributing to disease diagnosis. In modeling, classification was the most applied technique (80%), used mainly for binary and multi-class health status identification. Regression was used in the remaining (21%) scientific works screened. The data was collected primarily in laboratory conditions (62%), and a few works were performed in field conditions (21%). Regarding the study's etiological agent responsible for causing the disease, fungi (53%) and viruses (23%) were the most analyzed group of pathogens found in the literature. Overall, proximal sensors are suitable for early plant disease diagnosis before and after symptom appearance, presenting classification accuracies mostly superior to 71% and regression coefficients superior to 61%. Nevertheless, additional research regarding the study of specific host-pathogen interactions is necessary. © 2025 Elsevier B.V.

2025

Object segmentation dataset generation framework for robotic bin-picking: Multi-metric analysis between results trained with real and synthetic data

Authors
Cordeiro, A; Rocha, LF; Boaventura-Cunha, J; Pires, EJS; Souza, JP;

Publication
Computers & Industrial Engineering

Abstract

2025

Nonlinear Control of Mecanum-Wheeled Robots Applying H8Controller

Authors
Arezki Abderrahim Chellal; João Braun; José Lima; Jose Gonçalves; Antonio Valente; Paulo Costa;

Publication
2025 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC)

Abstract

2025

Dissipative pulses stabilized by nonlinear gradient terms: A review of their dynamics and their interaction

Authors
Descalzi, O; Facao, M; Carvalho, MI; Cartes, C; Brand, HR;

Publication
PHYSICA D-NONLINEAR PHENOMENA

Abstract
We study the dynamics as well as the interaction of stable dissipative solitons (DSs) of the cubic complex Ginzburg-Landau equation which are stabilized only by nonlinear gradient (NLG) terms. First we review stationary, periodic, quasi-periodic, and chaotic solutions. Then we investigate sudden transitions to chaotic from periodic and vice versa as a function of one parameter, as well as different outcomes, for fixed parameters, when varying the initial condition. In addition, we present a quasi-analytic approach to evaluate the separation of nearby trajectories for the case of stationary DSs as well as for periodic DSs, both stabilized by nonlinear gradient terms. In a separate section collisions between different types of DSs are reviewed. First we present a concise review of collisions of DSs without NLG terms and then the results of collisions between stationary DSs stabilized by NLG terms are summarized focusing on the influence of the nonlinear gradient term associated with the Raman effect. We point out that both, meandering oscillatory bound states as well as bound states with large amplitude oscillations appear to be specific for coupled cubic complex Ginzburg-Landau equations with a stabilizing cubic nonlinear gradient term.

2025

A GRASP-based multi-objective approach for the tuna purse seine fishing fleet routing problem

Authors
Granado, I; Silva, E; Carravilla, MA; Oliveira, JF; Hernando, L; Fernandes-Salvador, JA;

Publication
COMPUTERS & OPERATIONS RESEARCH

Abstract
Nowadays, the world's fishing fleet uses 20% more fuel to catch the same amount offish compared to 30 years ago. Addressing this negative environmental and economic performance is crucial due to stricter emission regulations, rising fuel costs, and predicted declines in fish biomass and body sizes due to climate change. Investment in more efficient engines, larger ships and better fuel has been the main response, but this is only feasible in the long term at high infrastructure cost. An alternative is to optimize operations such as the routing of a fleet, which is an extremely complex problem due to its dynamic (time-dependent) moving target characteristics. To date, no other scientific work has approached this problem in its full complexity, i.e., as a dynamic vehicle routing problem with multiple time windows and moving targets. In this paper, two bi-objective mixed linear integer programming (MIP) models are presented, one for the static variant and another for the time-dependent variant. The bi-objective approaches allow to trade off the economic (e.g., probability of high catches) and environmental (e.g., fuel consumption) objectives. To overcome the limitations of exact solutions of the MIP models, a greedy randomized adaptive search procedure for the multi-objective problem (MO-GRASP) is proposed. The computational experiments demonstrate the good performance of the MO-GRASP algorithm with clearly different results when the importance of each objective is varied. In addition, computational experiments conducted on historical data prove the feasibility of applying the MO-GRASP algorithm in a real context and explore the benefits of joint planning (collaborative approach) compared to a non-collaborative strategy. Collaborative approaches enable the definition of better routes that may select slightly worse fishing and planting areas (2.9%), but in exchange fora significant reduction in fuel consumption (17.3%) and time at sea (10.1%) compared to non-collaborative strategies. The final experiment examines the importance of the collaborative approach when the number of available drifting fishing aggregation devices (dFADs) per vessel is reduced.

  • 31
  • 4074