Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Interpretable Rules for Online Failure Prediction: A Case Study on the Metro do Porto dataset

Authors
Jakobs, M; Veloso, B; Gama, J;

Publication
CoRR

Abstract

2025

Biomimicry for sustainability: Upframing service ecosystems

Authors
Gallan, S; Alkire, L; Teixeira, JG; Heinonen, K; Fisk, P;

Publication
AMS Review

Abstract
Amidst an urgent need for sustainability, novel approaches are required to address environmental challenges. In this context, biomimicry offers a promising logic for catalyzing nature’s wisdom to address this complexity. The purpose of this research is to (1) establish a biomimetic understanding and vocabulary for sustainability and (2) apply biomimicry to upframe service ecosystems as a foundation for sustainability. Our research question is: How can the principles of natural ecosystems inform and enhance the sustainability of service ecosystems? The findings highlight upframed service ecosystems as embodying a set of practices that (1) promote mutualistic interactions, (2) build on local biotic and abiotic components supporting emergence processes, (3) leverage (bio)diversity to build resilience, (4) foster resource sharing for regeneration, and (5) bridge individual roles to optimize the community rather than individual well-being. Our upframed definition of a service ecosystem is a system of resource-integrating biotic actors and abiotic resources functioning according to ecocentric principles for mutualistic and regenerative value creation. The discussion emphasizes the implications of this upframed definition for sustainability practices, advocating for a shift in understanding and interacting with service ecosystems. It emphasizes the potential for immediate mutualistic benefits and long-term regenerative impacts. © Academy of Marketing Science 2025.

2025

Markerless multi-view 3D human pose estimation: A survey

Authors
Nogueira, AFR; Oliveira, HP; Teixeira, LF;

Publication
IMAGE AND VISION COMPUTING

Abstract
3D human pose estimation aims to reconstruct the human skeleton of all the individuals in a scene by detecting several body joints. The creation of accurate and efficient methods is required for several real-world applications including animation, human-robot interaction, surveillance systems or sports, among many others. However, several obstacles such as occlusions, random camera perspectives, or the scarcity of 3D labelled data, have been hampering the models' performance and limiting their deployment in real-world scenarios. The higher availability of cameras has led researchers to explore multi-view solutions due to the advantage of being able to exploit different perspectives to reconstruct the pose. Most existing reviews focus mainly on monocular 3D human pose estimation and a comprehensive survey only on multi-view approaches to determine the 3D pose has been missing since 2012. Thus, the goal of this survey is to fill that gap and present an overview of the methodologies related to 3D pose estimation in multi-view settings, understand what were the strategies found to address the various challenges and also, identify their limitations. According to the reviewed articles, it was possible to find that most methods are fully-supervised approaches based on geometric constraints. Nonetheless, most of the methods suffer from 2D pose mismatches, to which the incorporation of temporal consistency and depth information have been suggested to reduce the impact of this limitation, besides working directly with 3D features can completely surpass this problem but at the expense of higher computational complexity. Models with lower supervision levels were identified to overcome some of the issues related to 3D pose, particularly the scarcity of labelled datasets. Therefore, no method is yet capable of solving all the challenges associated with the reconstruction of the 3D pose. Due to the existing trade-off between complexity and performance, the best method depends on the application scenario. Therefore, further research is still required to develop an approach capable of quickly inferring a highly accurate 3D pose with bearable computation cost. To this goal, techniques such as active learning, methods that learn with a low level of supervision, the incorporation of temporal consistency, view selection, estimation of depth information and multi-modal approaches might be interesting strategies to keep in mind when developing a new methodology to solve this task.

2025

Modelling sustainability in cyber-physical systems: A systematic mapping study

Authors
Barisic, A; Cunha, J; Ruchkin, I; Moreira, A; Araújo, J; Challenger, M; Savic, D; Amaral, V;

Publication
SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS

Abstract
Supporting sustainability through modelling and analysis has become an active area of research in Software Engineering. Therefore, it is important and timely to survey the current state of the art in sustainability in Cyber-Physical Systems (CPS), one of the most rapidly evolving classes of complex software systems. This work presents the findings of a Systematic Mapping Study (SMS) that aims to identify key primary studies reporting on CPS modelling approaches that address sustainability over the last 10 years. Our literature search retrieved 2209 papers, of which 104 primary studies were deemed relevant fora detailed characterisation. These studies were analysed based on nine research questions designed to extract information on sustainability attributes, methods, models/meta-models, metrics, processes, and tools used to improve the sustainability of CPS. These questions also aimed to gather data on domain-specific modelling approaches and relevant application domains. The final results report findings for each of our questions, highlight interesting correlations among them, and identify literature gaps worth investigating in the near future.

2025

Spatio-Temporal Predictive Modeling Techniques for Different Domains: a Survey

Authors
Kumar, R; Bhanu, M; Mendes-moreira, J; Chandra, J;

Publication
ACM COMPUTING SURVEYS

Abstract
Spatio-temporal prediction tasks play a crucial role in facilitating informed decision-making through anticipatory insights. By accurately predicting future outcomes, the ability to strategize, preemptively address risks, and minimize their potential impact is enhanced. The precision in forecasting spatial and temporal patterns holds significant potential for optimizing resource allocation, land utilization, and infrastructure development. While existing review and survey papers predominantly focus on specific forecasting domains such as intelligent transportation, urban planning, pandemics, disease prediction, climate and weather forecasting, environmental data prediction, and agricultural yield projection, limited attention has been devoted to comprehensive surveys encompassing multiple objects concurrently. This article addresses this gap by comprehensively analyzing techniques employed in traffic, pandemics, disease forecasting, climate and weather prediction, agricultural yield estimation, and environmental data prediction. Furthermore, it elucidates challenges inherent in spatio-temporal forecasting and outlines potential avenues for future research exploration.

2025

A Deep Learning Framework for Medium-Term Covariance Forecasting in Multi-Asset Portfolios

Authors
Reis, P; Serra, AP; Gama, J;

Publication
CoRR

Abstract

  • 26
  • 4074