2025
Authors
Campos, R; Jorge, A; Jatowt, A; Bhatia, S; Litvak, M;
Publication
Advances in Information Retrieval - 47th European Conference on Information Retrieval, ECIR 2025, Lucca, Italy, April 6-10, 2025, Proceedings, Part V
Abstract
For seven years, the Text2Story Workshop series has fostered a vibrant community dedicated to understanding narrative structure in text, resulting in significant contributions to the field and developing a shared understanding of the challenges in this domain. While traditional methods have yielded valuable insights, the advent of Transformers and LLMs have ignited a new wave of interest in narrative understanding. The previous iteration of the workshop also witnessed a surge in LLM-based approaches, demonstrating the community’s growing recognition of their potential. In this eighth edition we propose to go deeper into the role of LLMs in narrative understanding. While LLMs have revolutionized the field of NLP and are the go-to tools for any NLP task, the ability to capture, represent and analyze contextual nuances in longer texts is still an elusive goal, let alone the understanding of consistent fine-grained narrative structures in text. Consequently, this iteration of the workshop will explore the issues involved in using LLMs to unravel narrative structures, while also examining the characteristics of narratives generated by LLMs. By fostering dialogue on these emerging areas, we aim to continue the workshop's tradition of driving innovation in narrative understanding research. Text2Story encompasses sessions covering full research papers, work-in-progress, demos, resources, position and dissemination papers, along with one keynote talk. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Authors
Sousa, H; Almeida, R; Silvano, P; Cantante, I; Campos, R; Jorge, A;
Publication
THIRTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, AAAI-25, VOL 39 NO 24
Abstract
Recent advances in natural language processing have raised expectations for generative models to produce coherent text across diverse language varieties. In the particular case of the Portuguese language, the predominance of Brazilian Portuguese corpora online introduces linguistic biases in these models, limiting their applicability outside of Brazil. To address this gap and promote the creation of European Portuguese resources, we developed a cross-domain language variety identifier (LVI) to discriminate between European and Brazilian Portuguese. Motivated by the findings of our literature review, we compiled the PtBrVarId corpus, a cross-domain LVI dataset, and study the effectiveness of transformer-based LVI classifiers for cross-domain scenarios. Although this research focuses on two Portuguese varieties, our contribution can be extended to other varieties and languages. We open source the code, corpus, and models to foster further research in this task.
2025
Authors
Sousa, H; Almasian, S; Campos, R; Jorge, A;
Publication
THIRTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, AAAI-25, VOL 39 NO 24
Abstract
Language models have become foundational to many widely used systems. However, these seemingly advantageous models are double-edged swords. While they excel in tasks related to resource-rich languages like English, they often lose the fine nuances of language forms, dialects, and varieties that are inherent to languages spoken in multiple regions of the world. Languages like European Portuguese are neglected in favor of their more popular counterpart, Brazilian Portuguese, leading to suboptimal performance in various linguistic tasks. To address this gap, we introduce the first open-source translation model specifically tailored for European Portuguese, along with a novel dataset specifically designed for this task. Results from automatic evaluations on two benchmark datasets demonstrate that our best model surpasses existing open-source translation systems for Portuguese and approaches the performance of industry-leading closed-source systems for European Portuguese. By making our dataset, models, and code publicly available, we aim to support and encourage further research, fostering advancements in the representation of underrepresented language varieties.
2025
Authors
da Silva, JP; Nogueira, AR; Pinto, J; Curral, M; Alves, AC; Sousa, R;
Publication
EXPERT SYSTEMS
Abstract
Integrating Industry 4.0 and Quality 4.0 optimises manufacturing through IoT and ML, improving processes and product quality. The primary challenge involves identifying patterns in computer numerical control (CNC) machining time-series data to boost manufacturing quality control. The proposed solution involves an experimental study comparing one-class and binary classification algorithms. This study aims to classify time-series data from CNC turning machines, offering insight into monitoring and adjusting tool wear to maintain product quality. The methodology entails extracting spectral features from time-series data to train both one-class and binary classification algorithms, assessing their effectiveness and computational efficiency. Although certain models consistently outperform others, determining the best performing is not possible, as a trade-off between classification and computational performance is observed, with gradient boosting standing out for effectively balancing both aspects. Thus, the choice between one-class and binary classification ultimately relies on dataset's features and task objectives.
2025
Authors
Ferreira, A; Barroso, J; Reis, A; Gouveia, AJ;
Publication
Smart Innovation, Systems and Technologies
Abstract
This article presents a systematic review of the most prevalent vulnerabilities plaguing web and mobile applications. By analyzing recent research, it identifies a core set of vulnerabilities, including injection flaws, broken authentication, cross-site scripting (XSS), and insecure direct object references. Recognizing the human element, the article acknowledges the role of social engineering in exploiting these technical weaknesses. The review delves deeper, exploring how these vulnerabilities manifest differently across web and mobile platforms, considering factors like server-side security and API access. The research concludes by advocating for a defense strategy, emphasizing the importance of secure coding practices, robust authentication, and user awareness training. This comprehensive approach paves the way for a more secure digital landscape where both web and mobile applications can thrive. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.
2025
Authors
Castro, JT; Pinheiro, I; Marques, MN; Moura, P; dos Santos, FN;
Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
In nature, and particularly in agriculture, pollination is fundamental for the sustainability of our society. In this context, pollination is a vital process underlying crop yield quality and is responsible for the biodiversity and the standards of the flora. Bees play a crucial role in natural pollination; however, their populations are declining. Robots can help maintain pollination levels while humans work to recover bee populations. Swarm robotics approaches appear promising for robotic pollination. This paper proposes the cooperation between multiple Unmanned Aerial Vehicles (UAVs) and an Unmanned Ground Vehicle (UGV), leveraging the advantages of collaborative work for pollination, referred to as Pollinationbots. Pollinationbots is based in swarm behaviors and methodologies to implement more effective pollination strategies, ensuring efficient pollination across various scenarios. The paper presents the architecture of the Pollinationbots system, which was evaluated using the Webots simulator, focusing on path planning and follower behavior. Preliminary simulation results indicate that this is a viable solution for robotic pollination. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.