2024
Authors
Karácsony, T; Jeni, LA; de la Torre, F; Cunha, JPS;
Publication
IMAGE AND VISION COMPUTING
Abstract
Many clinical applications involve in-bed patient activity monitoring, from intensive care and neuro-critical infirmary, to semiology-based epileptic seizure diagnosis support or sleep monitoring at home, which require accurate recognition of in-bed movement actions from video streams. The major challenges of clinical application arise from the domain gap between common in-the-lab and clinical scenery (e.g. viewpoint, occlusions, out-of-domain actions), the requirement of minimally intrusive monitoring to already existing clinical practices (e.g. non-contact monitoring), and the significantly limited amount of labeled clinical action data available. Focusing on one of the most demanding in-bed clinical scenarios - semiology-based epileptic seizure classification - this review explores the challenges of video-based clinical in-bed monitoring, reviews video-based action recognition trends, monocular 3D MoCap, and semiology-based automated seizure classification approaches. Moreover, provides a guideline to take full advantage of transfer learning for in-bed action recognition for quantified, evidence-based clinical diagnosis support. The review suggests that an approach based on 3D MoCap and skeleton-based action recognition, strongly relying on transfer learning, could be advantageous for these clinical in-bed action recognition problems. However, these still face several challenges, such as spatio-temporal stability, occlusion handling, and robustness before realizing the full potential of this technology for routine clinical usage.
2024
Authors
Moreira, T; Santos, FN; Santos, L; Sarmento, J; Terra, F; Sousa, A;
Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Climate change, limited natural resources, and the increase in the world's population impose society to produce food more sustainably, with lower energy and water consumption. The use of robots in agriculture is one of the most promising solutions to change the paradigm of agricultural practices. Agricultural robots should be seen as a way to make jobs easier and lighter, and also a way for people who do not have agricultural skills to produce their food. The PixelCropRobot is a low-cost, open-source robot that can perform the processes of monitoring and watering plants in small gardens. This work proposes a mission supervisor for PixelCropRobot, and general agricultural robots, and presents a prototype of user interface to this mission supervision. The communication between the mission supervisor and the other components of the system is done using ROS2 and MQTT, and mission file standardized. The mission supervisor receives a prescription map, with information about the respective mission, and decomposes them into simple tasks. An A* algorithm then defines the priority of each mission that depends on factors like water requirements, and distance travelled. This concept of mission supervisor was deployed into the PixelCropRobot and was validated in real conditions, showing a enormous potential to be extended to other agricultural robots.
2024
Authors
Agamez Arias, P; Miranda, V;
Publication
2024 IEEE 22nd Mediterranean Electrotechnical Conference, MELECON 2024
Abstract
This paper aims to study battery response under two operation strategies to analyze the annual cycles and operation costs (revenues) via sensitivity analysis. A battery model that considers performance parameters (AC-AC RTE, DOD, and C-rates) for different technologies is approached to identify how these parameters influence battery behavior and revenue. Strategies refer to (A) energy arbitrage, EA, and (B) EA and the provision of tertiary reserve. Simulations conducted for real data from Portuguese electricity and regulation markets showed regardless of the strategy used, the annual cycles and revenue are dominated by the performance parameters, instead of price volatility. In addition, for batteries with higher C-rates, as the AC-AC RTE is reduced up to 80%, the annual cycles and revenues are significantly reduced to 50% and 45% respectively, regarding its ideal model (100% AC-AC RTE). For lower C-rates, the annual cycles and revenues are slightly reduced with AC-AC RTE reductions. Specifically, strategy B revealed that annual cycles and revenue could also be influenced by the capacity requirements and the control area where batteries are providing services. © 2024 IEEE.
2024
Authors
Barros, S; Filipe, V; Gonçalves, L;
Publication
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
Abstract
Prostate cancer is one of the most common types of cancer in men. The ISUP grade and Gleason Score are terms related to the classification of this cancer based on the histological characteristics of the tissues examined in a biopsy. This paper explains an approach that utilizes and evaluates pre-trained models such as ResNet-50, VGG19, and InceptionV3, regarding their ability to automatically classify prostate cancer and its severity based on images and masks annotated with ISUP grades and Gleason Scores. At the end of the training, the performance of each trained model is presented, as well as the comparison between the original and predicted data. This comparison aims to understand if this approach can indeed be used for a more automated classification of prostate cancer. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024.
2024
Authors
Rodrigues, M; Miguéis, VL; Felix, C; Rodrigues, C;
Publication
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
Data-driven models have been recognized as powerful tools to support Structural Health Monitoring (SHM). This paper contributes to the literature by exploring two data-driven approaches to detect damage through changes in a set of variables that assess the condition of the structure, and accommodates the challenge that may arise due to the influence of environmental and operational variabilities. This influence is reflected in the response of the structure and can reduce the probability of detecting damage in a structure or increase the probability of signaling false positives. This paper conducts a comparative study between a machine learning detection approach (supported by linear regression, random forest, support vector machine, and neural networks) and a cointegration approach, with the aim of detecting damage as early as possible. This study also contributes to the literature by evaluating the merits of the damage detection methods using real data collected from a small-scale structure. The structure is analyzed in a reference state and a perturbed state in which damage is emulated. The results show that both approaches are able to detect damage within the first 24 h, without ever signaling false positives. The cointegration based approach can notably detect damage after 10 h and 15 minutes, while the machine learning approach takes 20 h 30 m to detect damage.
2024
Authors
Gião, HD; Flores, A; Pereira, R; Cunha, J;
Publication
CoRR
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.