Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2024

Painless Artificial Intelligence Point-of-Care hemogram diagnosis in Companion Animals

Authors
Barroso, TG; Costa, JM; Gregório, AH; Martins, RC;

Publication

Abstract
Quantification of erythrocytes and leukocytes is an essential aspect of hemogram diagno- 23 sis in Veterinary Medicine. Flow cytometry analysis, laser scattering, and impedance detection are 24 standard laboratory techniques, verified by manual microscopy counting. Although single-cell scat- 25 tering is already used as a standard technology for differentiating cell counts in flow cytometry, it 26 requires capillary cell separation. The current study investigates the scattering characteristics of 27 whole blood to identify correlations with erythrocytes and leukocytes counts. The scattering infor- 28 mation present in blood samples can be classified into three types: i) geometrical scattering, which 29 occurs when non-absorbed light is reflected and scattered, ii) Mie scattering, which happens when 30 light is scattered by particles of a similar size to the wavelength, and iii) Rayleigh scattering, which occurs when light is scattered by particles that are smaller than the incident light wavelength. In 32 this study, we investigate the scattering correction coefficients of dog blood absorption spectra in 33 the visible-near infrared range, to establish direct correlations with erythrocytes and leukocytes 34 counts, using multivariate linear regression. Our findings demonstrate the possibility of using the 35 scattering properties of dog blood, which is a step towards the existence of a portable and miniatur- 36 ized hemogram diagnosis in Veterinary Clinics worldwide.

2024

A Multimodal Learning-based Approach for Autonomous Landing of UAV

Authors
Neves, FS; Branco, LM; Pereira, M; Claro, RM; Pinto, AM;

Publication
2024 20TH IEEE/ASME INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS, MESA 2024

Abstract
In the field of autonomous Unmanned Aerial Vehicles (UAVs) landing, conventional approaches fall short in delivering not only the required precision but also the resilience against environmental disturbances. Yet, learning-based algorithms can offer promising solutions by leveraging their ability to learn the intelligent behaviour from data. On one hand, this paper introduces a novel multimodal transformer-based Deep Learning detector, that can provide reliable positioning for precise autonomous landing. It surpasses standard approaches by addressing individual sensor limitations, achieving high reliability even in diverse weather and sensor failure conditions. It was rigorously validated across varying environments, achieving optimal true positive rates and average precisions of up to 90%. On the other hand, it is proposed a Reinforcement Learning (RL) decision-making model, based on a Deep Q-Network (DQN) rationale. Initially trained in simulation, its adaptive behaviour is successfully transferred and validated in a real outdoor scenario. Furthermore, this approach demonstrates rapid inference times of approximately 5ms, validating its applicability on edge devices.

2024

Exploring Virtual Reality in Omnichannel Marketing: A Systematic Review

Authors
Silva, R; Pereira, I; Nicola, S; Madureira, A;

Publication
Smart Innovation, Systems and Technologies

Abstract
VR (Virtual Reality) is a technology that has been gaining more and more traction over the years, with a market that keeps on increasing in size and great opportunities. This research aims to obtain a better grasp on how VR will impact the future of omnichannel marketing, with a focus on retail. Some businesses have already begun taking advantage of these technologies. They coordinate the integration of both physical and digital channels used to interact with customers in order to improve the customer experience. VR is one such channel, and it offers consumers a whole new way to do their shopping. As technology evolves, it is important that businesses and people stay informed in order to adapt to an ever-changing market. VR is an innovative technology that a lot of potential companies could take advantage of and even gain a competitive advantage over other businesses. Through VR people and businesses are able to access the metaverse. The metaverse is a digital world parallel to our own where customers can interact with brands and their virtual products. By interacting with a virtual version of a product, consumers will have a better grasp of the product they are interested in and make better decisions when purchasing the real one. This not only raises consumer satisfaction but could also be very useful. To fully grasp what VR is capable of, a literature review was performed to understand what VR is in fact and how the metaverse can be used. Finally, a Prisma systematic review will be presented with the research question “How VR will impact the future of omnichannel marketing?”. This was done in order to obtain unbiased data from which conclusions can be drawn. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

2024

Exploring Features to Classify Occupational Accidents in the Retail Sector

Authors
Sena, I; Braga, AC; Novais, P; Fernandes, FP; Pacheco, MF; Vaz, CB; Lima, J; Pereira, AI;

Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT I, OL2A 2023

Abstract
The Machine Learning approach is used in several application domains, and its exploitation in predicting accidents in occupational safety is relatively recent. The present study aims to apply different Machine Learning algorithms for classifying the occurrence or non-occurrence of accidents at work in the retail sector. The approach consists of obtaining an impact score for each store and work unit, considering two databases of a retail company, the preventive safety actions, and the action plans. Subsequently, each score is associated with the occurrence or non-occurrence of accidents during January and May 2023. Of the five classification algorithms applied, the Support Vector Machine was the one that obtained the best accuracy and precision values for the preventive safety actions. As for the set of actions plan, the Logistic Regression reached the best results in all calculated metrics. With this study, estimating the impact score of the study variables makes it possible to identify the occurrence of accidents at work in the retail sector with high precision and accuracy.

2024

Probabilistic Positioning of a Mooring Cable in Sonar Images for In-Situ Calibration of Marine Sensors

Authors
Oliveira, AJ; Ferreira, BM; Cruz, NA; Diamant, R;

Publication
IEEE TRANSACTIONS ON MOBILE COMPUTING

Abstract
The calibration of sensors stationed along a cable in marine observatories is a time-consuming and expensive operation that involves taking the mooring out of the water periodically. In this paper, we present a method that allows an underwater vehicle to approach a mooring, in order to take reference measurements along the cable for in-situ sensor calibration. We use the vehicle's Mechanically Scanned Imaging Sonar (MSIS) to identify the cable's reflection within the sonar image. After pre-processing the image to remove noise, enhance contour lines, and perform smoothing, we employ three detection steps: 1) selection of regions of interest that fit the cable's reflection pattern, 2) template matching, and 3) a track-before-detect scheme that utilized the vehicle's motion. The later involves building a lattice of template matching responses for a sequence of sonar images, and using the Viterbi algorithm to find the most probable sequence of cable locations that fits the maximum speed assumed for the surveying vessel. Performance is explored in pool and sea trials, and involves an MSIS onboard an underwater vehicle scanning its surrounding to identify a steel-core cable. The results show a sub-meter accuracy in the multi-reverberant pool environment and in the sea trial. For reproducibility, we share our implementation code.

2024

The Impact of Social Responsibility on the Performance of European Listed Companies

Authors
Rocha, R; Bandeira, A; Ramos, P;

Publication
SUSTAINABILITY

Abstract
This research aims to analyze the impact of social responsibility (SR) on the performance of 216 European companies from 2017 to 2021. The objective of this research is to determine how the operational, financial, and market performance of companies is influenced by social responsibility practices. The methodology adopted is quantitative in nature, using the estimation of models for panel data. To quantify corporate performance, this study uses the return on assets (ROA), the return on equity (ROE), and finally Tobin's Q ratio. Additionally, environment, social, and governance (ESG) and United Nations Global Compact (GC) scores are used to quantify SR. Our findings indicate a complex relationship between SR and corporate performance. While SR positively impacts market performance, it negatively affects operational and financial performance. This disparity becomes more pronounced when comparing companies with the highest and lowest SR scores. Further analysis reveals that the environment, social, and governance dimensions of ESG negatively correlate with ROA and ROE, but positively correlate with Tobin's Q. The GC's anti-corruption and environment scores exhibit a negative relationship with Tobin's Q, the human rights dimension negatively correlates with ROE and ROA, and the labor law dimension positively influences ROE. Notably, firm size amplifies these relationships, whereas firm age has a dampening effect. This research offers significant contributions to the literature by providing a comprehensive analysis of the impact of social responsibility on corporate performance based on ESG and GC scores.

  • 132
  • 4180