Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Towards Machine-Learning-Based Digital Twins to Enhance Operation and Energy Management in Smart Buildings

Authors
Bruno Palley; João Poças Martins; Hermano Bernanrdo; Rosaldo J. F. Rossetti;

Publication

Abstract

2025

A Scoping Review of Emerging AI Technologies in Mental Health Care: Towards Personalized Music Therapy

Authors
Santos, Natália; Bernardes, Gilberto;

Publication

Abstract
Music therapy has emerged as a promising approach to support various mental health conditions, offering non-pharmacological therapies with evidence of improved well-being. Rapid advancements in artificial intelligence (AI) have recently opened new possibilities for ‘personalized’ musical interventions in mental health care. This article explores the application of AI in the context of mental health, focusing on the use of machine learning (ML), deep learning (DL), and generative music (GM) to personalize musical interventions. The methodology included a scoping review in the Scopus and PubMed databases, using keywords denoting emerging AI technologies, music-related contexts, and application domains within mental health and well-being. Identified research lines encompass the analysis and generation of emotional patterns in music using ML, DL, and GM techniques to create musical experiences adapted to user needs. The results highlight that these technologies effectively promote emotional and cognitive well-being, enabling personalized interventions that expand mental health therapies.

2025

The Role of Flexibility Markets in Maintenance Scheduling of MV Networks

Authors
Tavares, B; Soares, F; Pereira, J; Gouveia, C;

Publication
2025 21ST INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM

Abstract
Flexibility markets are emerging across Europe to improve the efficiency and reliability of distribution networks. This paper presents a methodology that integrates local flexibility markets into network maintenance scheduling, optimizing the process by contracting flexibility to avoid technical issues under the topology defined to operate the network during maintenance. A meta-heuristic approach, Evolutionary Particle Swarm Optimization (EPSO), is used to determine the optimal network topology.

2025

CapyMOA: Efficient Machine Learning for Data Streams in Python

Authors
Gomes, HM; Lee, A; Gunasekara, N; Sun, Y; Cassales, GW; Liu, J; Heyden, M; Cerqueira, V; Bahri, M; Koh, YS; Pfahringer, B; Bifet, A;

Publication
CoRR

Abstract

2025

Retinitis Pigmentosa Classification with Deep Learning and Integrated Gradients Analysis

Authors
Ferreira, H; Marta, A; Machado, J; Couto, I; Marques, JP; Beirao, JM; Cunha, A;

Publication
APPLIED SCIENCES-BASEL

Abstract
Inherited retinal diseases (IRDs) are genetic disorders affecting photoreceptors and the retinal pigment epithelium, leading to progressive vision loss. Retinitis pigmentosa (RP), the most common IRD, manifests as night blindness, peripheral vision loss, and eventually central vision decline. RP is genetically diverse and can be categorized into non-syndromic and syndromic. Advanced imaging technologies such as fundus autofluorescence (FAF) and spectral-domain optical coherence tomography (SD-OCT) facilitate diagnosing and managing these conditions. The integration of artificial intelligence in analyzing retinal images has shown promise in identifying genes associated with RP. This study used a dataset from Portuguese public hospitals, comprising 2798 FAF images labeled for syndromic and non-syndromic RP across 66 genes. Three pre-trained models, Inception-v3, ResNet-50, and VGG-19, were used to classify these images, obtaining an accuracy of over 80% in the training data and 54%, 56%, and 54% in the test data for all models. Data preprocessing included class balancing and boosting to address variability in gene representation. Model performance was evaluated using some main metrics. The findings demonstrate the effectiveness of deep learning in automatically classifying retinal images for different RP-associated genes, marking a significant advancement in the diagnostic capabilities of artificial intelligence and advanced imaging techniques in IRD.

2025

Teachers’ Perspective on Software Testing Education

Authors
Fasolino, AR; Marin, B; Vos, TEJ; Mendes, A; Paiva, ACR; Cammaerts, F; Snoeck, M; Saadatmand, M; Tramontana, P;

Publication
ACM Transactions on Computing Education

Abstract
Context: Software testing is a critical aspect of the software development lifecycle, yet it remains underrepresented in academic curricula. Despite advances in pedagogical practices and increased attention from the academic community, challenges persist in effectively teaching software testing. Understanding these challenges from the teachers’ perspective is crucial to aligning education with industry needs. Objective: To analyze the characteristics, practices, tools, and challenges of software testing courses in higher education, from the perspective of educators, and to assess the integration of recent pedagogical approaches in software testing education. Method: A structured survey consisting of 52 questions was distributed to 143 software testing educators across Western European universities, resulting in 49 valid responses. The survey explored topics taught, course organization, teaching practices, tools and materials used, gamification approaches, and teacher satisfaction. Results: The survey revealed significant variability in course content, structure, and teaching methods. Most dedicated software testing courses are offered at the master’s level and are elective, whereas testing is introduced earlier in less specialized (NST) courses. There is low adoption of formal guidelines (e.g., ACM, SWEBOK), limited integration of non-functional testing types, and a high diversity in textbooks and tools used. While modern practices like Test-Driven Development and automated assessment are increasingly adopted, gamification and active learning approaches remain underutilized. Teachers expressed a need for improved and more consistent teaching materials. Conclusion: The study highlights a mismatch between academic practices and industry expectations in software testing education. Greater integration of standardized curricula, broader adoption of modern teaching tools, and increased support for teachers through high-quality, adaptable teaching materials are needed to enhance the effectiveness of software testing education.

  • 129
  • 4389