Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2024

Depth Control of an Underwater Sensor Platform: Comparison between Variable Buoyancy and Propeller Actuated Devices

Authors
Carneiro, JF; Pinto, JB; de Almeida, FG; Cruz, NA;

Publication
SENSORS

Abstract
Underwater long-endurance platforms are crucial for continuous oceanic observation, allowing for sustained data collection from a multitude of sensors deployed across diverse underwater environments. They extend mission durations, reduce maintenance needs, and significantly improve the efficiency and cost-effectiveness of oceanographic research endeavors. This paper investigates the closed-loop depth control of actuation systems employed in underwater vehicles, focusing on the energy consumption of two different mechanisms: variable buoyancy and propeller actuated devices. Using a prototype previously developed by the authors, this paper presents a detailed model of the vehicle using both actuation solutions. The proposed model, although being a linear-based one, accounts for several nonlinearities that are present such as saturations, sensor quantization, and the actuator brake model. Also, it allows a simple estimation of the energy consumption of both actuation solutions. Based on the developed models, this study then explores the intricate interplay between energy consumption and control accuracy. To this end, several PID-based controllers are developed and tested in simulation. These controllers are used to evaluate the dynamic response and power requirements of variable buoyancy systems and propeller actuated devices under various operational conditions. Our findings contribute to the optimization of closed-loop depth control strategies, offering insights into the trade-offs between energy efficiency and system effectiveness in diverse underwater applications.

2024

Plantar pressure thresholds as a strategy to prevent diabetic foot ulcers: A systematic review

Authors
Castro Martins, P; Marques, A; Coelho, L; Vaz, M; Costa, JT;

Publication
HELIYON

Abstract
Background: The development of ulcers in the plantar region of the diabetic foot originates mainly from sites subjected to high pressure. The monitoring of these events using maximum allowable pressure thresholds is a fundamental procedure in the prevention of ulceration and its recurrence. Objective: The aim of this review was to identify data in the literature that reveal an objective threshold of plantar pressure in the diabetic foot, where pressure is classified as promoting ulceration. The aim is not to determine the best and only pressure threshold for ulceration, but rather to clarify the threshold values most used in clinical practice and research, also considering the devices used and possible applications for offloading plantar pressure. Design: A systematic review. Methods: The search was performed in three electronic databases, by the PRISMA methodology, for studies that used a pressure threshold to minimize the risk of ulceration in the diabetic foot. The selected studies were subjected to eligibility criteria. Results: Twenty-six studies were included in this review. Seven thresholds were identified, five of which are intended for the inside of the shoe: a threshold of average peak pressure of 200 kPa; 25 % and 40-80 % reduction from initial baseline pressure; 32-35 mm Hg for a capillary perfusion pressure; and a matrix of thresholds based on patient risk, shoe size and foot region. Two other thresholds are intended for the barefoot, 450 and 750 kPa. The threshold of 200 kPa of pressure inside the shoe is the most agreed upon among the studies. Regarding the prevention of ulceration and its recurrence, the efficacy of the proposed threshold matrix and the threshold of reducing baseline pressure by 40-80 % has not yet been evaluated, and the evidence for the remaining thresholds still needs further studies. Conclusions: Some heterogeneity was found in the studies, especially regarding the measurement systems used, the number of regions of interest and the number of steps to be considered for the threshold. Even so, this review reveals the way forward to obtain a threshold indicative of an effective steppingstone in the prevention of diabetic foot ulcer.

2024

Novel adaptive protection approach for optimal coordination of directional overcurrent relays

Authors
Reiz, C; Alves, E; Melim, A; Gouveia, C; Carrapatoso, A;

Publication
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024

Abstract
The integration of inverter-based distributed generation challenges the implementation of an reliable protection This work proposes an adaptive protection method for coordinating protection systems using directional overcurrent relays, where the settings depend on the distribution network operating conditions. The coordination problem is addressed through a specialized genetic algorithm, aiming to minimize the total operating times of relays with time-delayed operation. The pickup current is also optimized. Coordination diagrams from diverse fault scenarios illustrate the method's adaptability to different operational conditions, emphasizing the importance of employing multiple setting groups for optimal protection system performance. The proposed technique provides high-quality solutions, enhancing reliability compared to traditional protection schemes.

2024

Enhancing Mesh Deformation Realism for SynthesizingWrinkles

Authors
Fernandes, L; Cetinaslan, O; Coelho, A;

Publication
PROCEEDINGS SIGGRAPH ASIA 2024 TECHNICAL COMMUNICATIONS

Abstract
We propose a solution for generating dynamic heightmap data to simulate deformations for soft objects, with a focus on the human skin. The solution utilizes mesostructure-level wrinkles and procedural textures to add static microstructure details. It offers flexibility beyond human skin during animations to mimic other material deformations, such as leather and rubber. Various methods suffer from self-intersections and increased storage requirements during synthesizing wrinkles. Although manual intervention using wrinkles and tension maps offers control, it lacks information on principal deformation directions. Physics-based simulations can generate detailed wrinkle maps, but may limit artistic control. Our research presents a procedural method to enhance the generation of dynamic deformation patterns, including wrinkles, with better control and without reliance on captured data. Incorporating static procedural patterns improves realism, and the proposed approach can be used in other application areas.

2024

Explainable Artificial Intelligence for Deep Synthetic Data Generation Models

Authors
Valina, L; Teixeira, B; Reis, A; Vale, Z; Pinto, T;

Publication
2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024

Abstract
Artificial intelligence encapsulates a black box of undiscovered knowledge, propelling the exploration of Explainable Artificial Intelligence (XAI) in generative data synthesis and deep learning. Focused on unveiling these black box areas, pointed into interpretability and validation in synthetic data generation, shedding light on the intricacies of generative processes. XAI techniques illuminate decision-making in complex algorithms, enhancing transparency and fostering a comprehensive understanding of non-linear relationships. Addressing the complexity of explaining deep learning models, this paper proposes an XAI solution for deep synthetic data generation explanation. The model integrates a clustering approach to identify similar training instances, reducing interpretation time for large datasets. Explanations, available in various formats, are tailored to diverse user profiles through integration with language models, generating texts with different technical detail levels. This research contributes to ethically deploying AI, bridging the gap between advanced model complexities and human interpretability in the dynamic landscape of artificial intelligence.

2024

A MQTT-based infrastructure to support Cooperative Online Learning Activities

Authors
Mendonca H.S.; Zambelli C.; Alves J.C.;

Publication
2024 39th Conference on Design of Circuits and Integrated Systems, DCIS 2024

Abstract
Teaching the processes of designing digital electronic systems is becoming an increasingly challenging task. Design methodologies and tools have evolved to cope with the evergrowing complexity and density, raising the abstraction level of the source design far away from the logic circuit. However, it is of paramount importance that fresh students start by understanding the fundamental concepts of Boolean algebra, design, and optimization of combinational and sequential gate-level circuits, before moving to higher abstract concepts and tools. For this, hands-on practice with simple real digital circuits is essential to understanding the essentials of the operation of digital circuits and how digital data is propagated and transformed from block to block. In this paper we present a distributed infrastructure based on the network protocol MQTT to support the deployment of distributed digital systems built with parts located in different physical locations. Thus, promoting the implementation of collaborative online learning/teaching activities will be one of our main goals. Experimental results show latencies between remote sites in the range of a few tens of milliseconds, which is acceptable for running simple digital systems at low speeds, which is necessary for being perceived and understanded by people.

  • 113
  • 4047