Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Pedro Neto is a MSc in Computer Science from the Aalto University, Finland and a PhD candidate at FEUP. Simultaneously, he works as a research assistant at Centre of Telecommunication and Multimedia at INESC TEC, developing, as part of the CADPath project, computer-aided diagnosis systems for colorectal and cervical cancers. Besides his work on the project, Pedro is also researching biometric systems, for instance face recognition or presentation attack detection, as well as the interpretability and explainability of artificial intelligence models.

Interest
Topics
Details

Details

  • Name

    Pedro David Carneiro
  • Role

    External Student
  • Since

    14th October 2020
002
Publications

2025

FX-MAD: Frequency-domain Explainability and Explainability-driven Unsupervised Detection of Face Morphing Attacks

Authors
Huber, M; Neto, PC; Sequeira, AF; Damer, N;

Publication
2025 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS, WACVW

Abstract
Face recognition (FR) systems are vulnerable to morphing attacks, which refer to face images created by morphing the facial features of two different identities into one face image to create an image that can match both identities, allowing serious security breaches. In this work, we apply a frequency-based explanation method from the area of explainable face recognition to shine a light on how FR models behave when processing a bona fide or attack pair from a frequency perspective. In extensive experiments, we used two different state-of-the-art FR models and six different morphing attacks to investigate possible differences in behavior. Our results show that FR models rely differently on different frequency bands when making decisions for bona fide pairs and morphing attacks. In the following step, we show that this behavioral difference can be used to detect morphing attacks in an unsupervised setup solely based on the observed frequency-importance differences in a generalizable manner.

2025

An Integrated and User-Friendly Platform for the Deployment of Explainable Artificial Intelligence Methods Applied to Face Recognition

Authors
Albuquerque, C; Neto, PC; Gonc, T; Sequeira, AF;

Publication
HCI FOR CYBERSECURITY, PRIVACY AND TRUST, HCI-CPT 2025, PT II

Abstract
Face recognition technology, despite its advancements and increasing accuracy, still presents significant challenges in explainability and ethical concerns, especially when applied in sensitive domains such as surveillance, law enforcement, and access control. The opaque nature of deep learning models jeopardises transparency, bias, and user trust. Concurrently, the proliferation of web applications presents a unique opportunity to develop accessible and interactive tools for demonstrating and analysing these complex systems. These tools can facilitate model decision exploration with various images, aiding in bias mitigation or enhancing users' trust by allowing them to see the model in action and understand its reasoning. We propose an explainable face recognition web application designed to support enrolment, identification, authentication, and verification while providing visual explanations through pixel-wise importance maps to clarify the model's decision-making process. The system is built in compliance with the European Union General Data Protection Regulation, ensuring data privacy and user control over personal information. The application is also designed for scalability, capable of efficiently managing large datasets. Load tests conducted on databases containing up to 1,000,000 images confirm its efficiency. This scalability ensures robust performance and a seamless user experience even with database growth.

2025

Balancing Beyond Discrete Categories: Continuous Demographic Labels for Fair Face Recognition

Authors
Neto, PC; Damer, N; Cardoso, JS; Sequeira, AF;

Publication
CoRR

Abstract

2025

How Knowledge Distillation Mitigates the Synthetic Gap in Fair Face Recognition

Authors
Neto, PC; Colakovic, I; Karakatic, S; Sequeira, AF;

Publication
COMPUTER VISION-ECCV 2024 WORKSHOPS, PT XX

Abstract
Leveraging the capabilities of Knowledge Distillation (KD) strategies, we devise a strategy to fight the recent retraction of face recognition datasets. Given a pretrained Teacher model trained on a real dataset, we show that carefully utilising synthetic datasets, or a mix between real and synthetic datasets to distil knowledge from this teacher to smaller students can yield surprising results. In this sense, we trained 33 different models with and without KD, on different datasets, with different architectures and losses. And our findings are consistent, using KD leads to performance gains across all ethnicities and decreased bias. In addition, it helps to mitigate the performance gap between real and synthetic datasets. This approach addresses the limitations of synthetic data training, improving both the accuracy and fairness of face recognition models.

2025

Second FRCSyn-onGoing: Winning solutions and post-challenge analysis to improve face recognition with synthetic data

Authors
DeAndres-Tame, I; Tolosana, R; Melzi, P; Vera-Rodriguez, R; Kim, M; Rathgeb, C; Liu, XM; Gomez, LF; Morales, A; Fierrez, J; Ortega-Garcia, J; Zhong, ZZ; Huang, YG; Mi, YX; Ding, SH; Zhou, SG; He, S; Fu, LZ; Cong, H; Zhang, RY; Xiao, ZH; Smirnov, E; Pimenov, A; Grigorev, A; Timoshenko, D; Asfaw, KM; Low, CY; Liu, H; Wang, CY; Zuo, Q; He, ZX; Shahreza, HO; George, A; Unnervik, A; Rahimi, P; Marcel, S; Neto, PC; Huber, M; Kolf, JN; Damer, N; Boutros, F; Cardoso, JS; Sequeira, AF; Atzori, A; Fenu, G; Marras, M; Struc, V; Yu, J; Li, ZJ; Li, JC; Zhao, WS; Lei, Z; Zhu, XY; Zhang, XY; Biesseck, B; Vidal, P; Coelho, L; Granada, R; Menotti, D;

Publication
INFORMATION FUSION

Abstract
Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark (i) the proposal of novel Generative AI methods and synthetic data, and (ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.