Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Orlando Frazão graduated in Physics Engineering (Optoelectronics and Electronics) from the University of Aveiro, Portugal. He received his Ph.D. from the University of Porto, Portugal, focusing on optical fiber sensors based on interferometry and nonlinear effects. From 1997 to 1998, he was with the Institute of Telecommunications in Aveiro, holding a scholarship position in the European Project. Currently, he is a Senior Researcher at the Centre of Photonic applied photonic of INESC TEC, where he leads the Optical Fiber Sensors group for physical measurement. His current research interests include optical fiber sensors and optical communications. He has led several national research projects in optical sensing and communications and participated in the European project . He has active bilateral collaborations with France, Spain, Germany, Poland and Brazil.

He has published approximately more 500 papers in peer-reviewed journals and in international and national conference proceedings, and is the author of 7 patents. He serves as a reviewer for several international journals, including Nature, IEEE, OSA, Elsevier, IOP, among others. He has also participated in numerous conferences as a member of organizing and scientific committees. He is the recipient of three awards and is a Senior Member of SPIE and a Fellow of EOS.

Interest
Topics
Details

Details

  • Name

    Orlando Frazão
  • Role

    Area Manager
  • Since

    01st June 1999
  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    orlando.frazao@inesctec.pt
019
Publications

2026

Optical Harmonic Vernier Effect: Conditions Required for Effective Sensitivity Amplification

Authors
Robalinho, P; Piaia, V; Ribeiro, AL; Silva, S; Frazao, O;

Publication
JOURNAL OF LIGHTWAVE TECHNOLOGY

Abstract
This paper presents the conditions required for effective sensitivity amplification in the optical harmonic Vernier effect. Two distinct cases are analyzed: in the first, the sensor cavity is the shortest, while in the second, it is the longest. Based on the proposed theoretical model, supported by experimental results, it is concluded that, in the first case, the sensitivity associated with the spectral extremes increases with the order of the harmonic states. In contrast, in the second case, the sensitivity at the spectral extremes remains constant, regardless of the harmonic order. To evaluate the effectiveness of applying the optical Vernier effect and to differentiate between the two cases, a new formulation of the magnification factor (M-factor) is introduced. This leads to the definition of a novel figure of merit for the optical Vernier effect, denoted as (FoM(Vernier)). In Case 1, where harmonics are generated by increasing the reference cavity, the figure of merit assumes a value of (m + 1). In Case 2, where harmonics are generated by increasing the sensor cavity, the figure of merit remains constant at 1, regardless of the state order (whether fundamental or harmonic). This study also concludes that the observed increase in sensitivity is apparent rather than intrinsic, as the sensitivity curve produced by the optical Vernier effect mirrors that of a conventional interferometer.

2026

Virtual Vernier Effect Harmonics for Enhanced Fabry-Perot Interferometer Sensing

Authors
Robalinho, P; Piaia, V; Lobo-Ribeiro, A; Silva, S; Frazao, O;

Publication
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
The present letter proposes the implementation of Vernier-effect harmonics through the virtualization of different reference cavities. A Fabry-Perot interferometer (FPI), actuated by a piezoelectric transducer (PZT), was employed as the sensing element. Subsequently, the sensitivity of the dynamic range was investigated for both the individual interferometer and the implementation of the Virtual Vernier effect. A sensitivity of (8 +/- 0.05)x10(-3) nm/nm was achieved for the single sensor measurement. Considering the implementation of the Vernier effect, the following sensitivities were obtained: (65.6 +/- 0.08)x10(-3) nm/nm for the fundamental, (132 +/- 1)x10-3 nm/nm for the first harmonic, and (192 +/- 1)x10(-3) nm/nm for the second harmonic. Furthermore, a maximum dynamic range of 11.25 mu m and a maximum resolution of 5 pm were achieved. This study highlights the advantages of simultaneously measuring both a single sensor cavity and a harmonic of the Virtual Vernier effect, in order to achieve large dynamic ranges along with high resolution.

2025

Displacement Sensing Based on Parasitic Cavity Referencing in Optical Circulators

Authors
Piaia, V; Robalinho, P; Rodrigues, A; Ribeiro, AL; Silva, S; Frazao, O;

Publication
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
In this letter, we propose a method for utilizing the internal cavities of optical circulator devices-commonly referred to as parasitic cavities-as optical reference cavities. The method involves using an optical circulator operating at 1550 nm, illuminated by a light source at 1330 nm, thereby enhancing the amplitude of the interferometric signals generated by the internal optical cavities. The system was characterized by using both an Optical Spectrum Analyzer (OSA) and the Low-Coherence Interferometry (LCI) technique. Experimental results indicate that the Optical Path Difference (OPD) remains constant with varying aperture sizes, thereby confirming the feasibility of employing the optical circulator as a reference sensor. Finally, its performance as a reference sensor is demonstrated through its integration with an external cavity that functions as a displacement sensor.

2025

High-Birefringence and Quarter-Wave Plates at 1550 nm Using Azopolymers

Authors
Soares, B; Silva, S; Ribeiro, P; Frazao, O;

Publication
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
Azobenzenes are a class of compounds which allow the writing and erasure of linear birefringence along any desired direction, through their ability to photoisomerize. This property enables applications requiring polarization control, which, despite extensive exploration in the visible spectrum, have yet to be fully capitalized in the infrared region. This study aims to systematically characterize the creation and relaxation of induced linear birefringence dynamics in azopolymers thin films for the 1550 nm region. Maximum birefringence values as high as 6.02 x 10(-2) were attained during the recording phase with a 445 nm pump laser, that stabilized at 5.40 x 10(-2) during the relaxation phase, achieved for a 2.4 mu m sample. In addition, a maximum phase shift of Delta Phi = 0.54 pi stabilizing at Delta Phi = 0.50 pi, was observed for a 9.7 mu m sample with a 532 nm writing laser. Accordingly, this shows the promising potential of azopolymers for many applications.

2024

Photoinduced birefringence in azopolymers measured at 1550 nm

Authors
Soares, B; Silva, S; Ribeiro, P; Frazao, O;

Publication
EOS ANNUAL MEETING, EOSAM 2024

Abstract
Azobenzenes are a class of compounds presenting photoisomerization capabilities that allow the writing and erasure of birefringence along a desired direction. This feature enables applications requiring polarization control, which although have been extensively investigated in the visible light spectrum, poor emphasis has been paid to the infrared region. In this paper, a systematic characterization of induced birefringence creation and relaxation dynamics has been carried out in azopolymers thin films in the infrared telecommunications region of 1550 nm. This study covers both birefringence characterization in terms of wavelength and irradiance of birefringence writing beams. Preliminary results revealed remarkable maximum birefringence values as high as 0.0465 attained during the recording phase, that stabilized at 0.0424 during the relaxation phase, which is quite promising for many applications.