Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Brief Biographical History: 1994 concluded the BSc degree in Electrical Engineering, Institute if Engineering of Coimbra, Polytechnic Institute of Coimbra, Portugal. 1996 concluded the Licenciatura degree in Electrical and Computer Engineering, Faculty of Engineering, the University of Porto, Portugal. 1999 concluded the MSc degree in Electrical and Computer Engineering, Faculty of Engineering, the University of Porto, Portugal. 2006 concluded the Ph.D. degree in Electrical Engineering, Faculty of Engineering, the University of Trás-dos-Montes e Alto Douro, Portugal.

Interest
Topics
Details

Details

  • Name

    Nuno Miguel Ferreira
  • Role

    External Research Collaborator
  • Since

    01st January 2018
Publications

2025

Evaluation of PID-Based Algorithms for UGVs

Authors
Gameiro, T; Pereira, T; Moghadaspoura, H; Di Giorgio, F; Viegas, C; Ferreira, N; Ferreira, J; Soares, S; Valente, A;

Publication
ALGORITHMS

Abstract
The autonomous navigation of unmanned ground vehicles (UGVs) in unstructured environments, such as agricultural or forestry settings, has been the subject of extensive research by various investigators. The navigation capability of a UGV in unstructured environments requires considering numerous factors, including the quality of data reception that allows reliable interpretation of what the UGV perceives in a given environment, as well as the use these data to control the UGV's navigation. This article aims to study different PID control algorithms to enable autonomous navigation on a robotic platform. The robotic platform consists of a forestry tractor, used for forest cleaning tasks, which was converted into a UGV through the integration of sensors. Using sensor data, the UGV's position and orientation are obtained and utilized for navigation by inputting these data into a PID control algorithm. The correct choice of PID control algorithm involved the study, analysis, and implementation of different controllers, leading to the conclusion that the Vector Field control algorithm demonstrated better performance compared to the others studied and implemented in this paper.

2025

Enhancing Nut-Tightening Processes in the Automotive Industry: Integration of 3D Vision Systems with Collaborative Robots

Authors
Gonçalves, A; Pereira, T; Lopes, D; Cunha, F; Lopes, F; Coutinho, F; Barreiros, J; Durães, J; Santos, P; Simões, F; Ferreira, P; Freitas, DC; Trovão, F; Santos, V; Ferreira, P; Ferreira, M;

Publication
Automation

Abstract
This paper presents a method for position correction in collaborative robots, applied to a case study in an industrial environment. The case study is aligned with the GreenAuto project and aims to optimize industrial processes through the integration of various hardware elements. The case study focuses on tightening a specific number of nuts onto bolts located on a partition plate, referred to as “Cloison”, which is mounted on commercial vans produced by Stellantis, to secure the plate. The main challenge lies in deviations that may occur in the plate during its assembly process, leading to uncertainties in its fastening to the vehicles. To address this and optimize the process, a collaborative robot was integrated with a 3D vision system and a screwdriving system. By using the 3D vision system, it is possible to determine the bolts’ positions and adjust them within the robot’s frame of reference, enabling the screwdriving system to tighten the nuts accurately. Thus, the proposed method aims to integrate these different systems to tighten the nuts effectively, regardless of the deviations that may arise in the plate during assembly. © 2025 by the authors.

2025

Integrated Fleet Management of Mobile Robots for Enhancing Industrial Efficiency: A Case Study on Interoperability in Multi-Brand Environments Within the Automotive Sector

Authors
Lopes, D; Pereira, T; Gonçalves, A; Cunha, F; Lopes, F; Antunes, J; Santos, V; Coutinho, F; Barreiros, J; Duraes, J; Santos, P; Simoes, F; Ferreira, P; Freitas, EDCD; Trovao, JPF; Ferreira, JP; Ferreira, NMF;

Publication
APPLIED SCIENCES-BASEL

Abstract
This paper presents the development of fleet management software for mobile robots, including AGV and AMR technologies, within the scope of a case study from the GreenAuto project. The system was designed to integrate position and status data from different robots, unifying this information into a single map. To achieve this, a web-based platform was developed to allow the simultaneous, real-time visualization of all robots in operation. However, the main challenge of this research lies in the heterogeneity of the fleet, which comprises robots of different makes and models from various manufacturers, each using distinct data formats. The proposed approach addresses this by facilitating fleet monitoring and management, ensuring a greater efficiency and coordination in the robot movement. The results demonstrate that the platform improves the traceability and operational supervision, promoting the optimized management of mobile robots. It is concluded that the proposed solution contributes to industrial automation by providing an intuitive and centralized interface, enabling future expansions for new functionalities and the integration with other emerging technologies. The proposed system demonstrated efficiency in updating and supervising operations, with an average latency of 120 ms for task status updates and an interface refresh rate of less than 1 s, enabling near real-time supervision and facilitating operational decision-making.

2024

Prototype for the Application of Production of Heavy Steel Structures

Authors
Bulganbayev, MA; Suliyev, R; Ferreira, NMF;

Publication
ELECTRONICS

Abstract
This study provides a comprehensive overview of the automated assembly process of large-scale metal structures using industrial robots. Our research reveals that the utilization of industrial robots significantly enhances precision, speed, and cost-effectiveness in the assembly process. The main findings suggest that integrating industrial robots in metal structure assembly holds substantial promise for optimizing manufacturing processes and elevating the quality of the final products. Additionally, the research demonstrates that robotic automation in assembly operations can lead to significant improvements in resource utilization and operational consistency. This automation also offers a viable solution to the challenges of manual labor shortages and ensures a higher standard of safety and accuracy in the manufacturing environment.

2024

Robots for Forest Maintenance

Authors
Gameiro, T; Pereira, T; Viegas, C; Di Giorgio, F; Ferreira, NF;

Publication
FORESTS

Abstract
Forest fires are becoming increasingly common, and they are devastating, fueled by the effects of global warming, such as a dryer climate, dryer vegetation, and higher temperatures. Vegetation management through selective removal is a preventive measure which creates discontinuities that will facilitate fire containment and reduce its intensity and rate of spread. However, such a method requires vast amounts of biomass fuels to be removed, over large areas, which can only be achieved through mechanized means, such as through using forestry mulching machines. This dangerous job is also highly dependent on skilled workers, making it an ideal case for novel autonomous robotic systems. This article presents the development of a universal perception, control, and navigation system for forestry machines. The selection of hardware (sensors and controllers) and data-integration and -navigation algorithms are central components of this integrated system development. Sensor fusion methods, operating using ROS, allow the distributed interconnection of all sensors and actuators. The results highlight the system's robustness when applied to the mulching machine, ensuring navigational and operational accuracy in forestry operations. This novel technological solution enhances the efficiency of forest maintenance while reducing the risk exposure to forestry workers.