Details
Name
Jorge OliveiraRole
Senior ResearcherSince
01st January 2024
Nationality
PortugalCentre
Artificial Intelligence and Decision SupportContacts
+351220402963
jorge.oliveira@inesctec.pt
2023
Authors
Elola, A; Aramendi, E; Oliveira, J; Renna, F; Coimbra, MT; Reyna, MA; Sameni, R; Clifford, GD; Rad, AB;
Publication
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
Abstract
Objective: Murmurs are abnormal heart sounds, identified by experts through cardiac auscultation. The murmur grade, a quantitative measure of the murmur intensity, is strongly correlated with the patient's clinical condition. This work aims to estimate each patient's murmur grade (i.e., absent, soft, loud) from multiple auscultation location phonocardiograms (PCGs) of a large population of pediatric patients from a low-resource rural area. Methods: The Mel spectrogram representation of each PCG recording is given to an ensemble of 15 convolutional residual neural networks with channel-wise attention mechanisms to classify each PCG recording. The final murmur grade for each patient is derived based on the proposed decision rule and considering all estimated labels for available recordings. The proposed method is cross-validated on a dataset consisting of 3456 PCG recordings from 1007 patients using a stratified ten-fold cross-validation. Additionally, the method was tested on a hidden test set comprised of 1538 PCG recordings from 442 patients. Results: The overall cross-validation performances for patient-level murmur gradings are 86.3% and 81.6% in terms of the unweighted average of sensitivities and F1-scores, respectively. The sensitivities (and F1-scores) for absent, soft, and loud murmurs are 90.7% (93.6%), 75.8% (66.8%), and 92.3% (84.2%), respectively. On the test set, the algorithm achieves an unweighted average of sensitivities of 80.4% and an F1-score of 75.8%. Conclusions: This study provides a potential approach for algorithmic pre-screening in low-resource settings with relatively high expert screening costs. Significance: The proposed method represents a significant step beyond detection of murmurs, providing characterization of intensity, which may provide an enhanced classification of clinical outcomes.
2023
Authors
Oliveira, J; Carvalho, M; Nogueira, D; Coimbra, M;
Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH
Abstract
Physiological signals are often corrupted by noisy sources. Usually, artificial intelligence algorithms analyze the whole signal, regardless of its varying quality. Instead, experienced cardiologists search for a high-quality signal segment, where more accurate conclusions can be draw. We propose a methodology that simultaneously selects the optimal processing region of a physiological signal and determines its decoding into a state sequence of physiologically meaningful events. Our approach comprises two phases. First, the training of a neural network that then enables the estimation of the state probability distribution of a signal sample. Second, the use of the neural network output within an integer program. The latter models the problem of finding a time window by maximizing a likelihood function defined by the user. Our method was tested and validated in two types of signals, the phonocardiogram and the electrocardiogram. In phonocardiogram and electrocardiogram segmentation tasks, the system's sensitivity increased on average from 95.1% to 97.5% and from 78.9% to 83.8%, respectively, when compared to standard approaches found in the literature.
2023
Authors
Reyna, A; Kiarashi, Y; Elola, A; Oliveira, J; Renna, F; Gu, A; Perez Alday, A; Sadr, N; Sharma, A; Kpodonu, J; Mattos, S; Coimbra, T; Sameni, R; Rad, AB; Clifford, D;
Publication
PLOS Digital Health
Abstract
Cardiac auscultation is an accessible diagnostic screening tool that can help to identify patients with heart murmurs, who may need follow-up diagnostic screening and treatment for abnormal cardiac function. However, experts are needed to interpret the heart sounds, limiting the accessibility of cardiac auscultation in resource-constrained environments. Therefore, the George B. Moody PhysioNet Challenge 2022 invited teams to develop algorithmic approaches for detecting heart murmurs and abnormal cardiac function from phonocardiogram (PCG) recordings of heart sounds. For the Challenge, we sourced 5272 PCG recordings from 1452 primarily pediatric patients in rural Brazil, and we invited teams to implement diagnostic screening algorithms for detecting heart murmurs and abnormal cardiac function from the recordings. We required the participants to submit the complete training and inference code for their algorithms, improving the transparency, reproducibility, and utility of their work. We also devised an evaluation metric that considered the costs of screening, diagnosis, misdiagnosis, and treatment, allowing us to investigate the benefits of algorithmic diagnostic screening and facilitate the development of more clinically relevant algorithms. We received 779 algorithms from 87 teams during the Challenge, resulting in 53 working codebases for detecting heart murmurs and abnormal cardiac function from PCG recordings. These algorithms represent a diversity of approaches from both academia and industry, including methods that use more traditional machine learning techniques with engineered clinical and statistical features as well as methods that rely primarily on deep learning models to discover informative features. The use of heart sound recordings for identifying heart murmurs and abnormal cardiac function allowed us to explore the potential of algorithmic approaches for providing more accessible diagnostic screening in resourceconstrained environments. The submission of working, open-source algorithms and the use of novel evaluation metrics supported the reproducibility, generalizability, and clinical relevance of the research from the Challenge. © 2023 Reyna et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2022
Authors
Oliveira, J; Renna, F; Costa, PD; Nogueira, M; Oliveira, C; Ferreira, C; Jorge, A; Mattos, S; Hatem, T; Tavares, T; Elola, A; Rad, AB; Sameni, R; Clifford, GD; Coimbra, MT;
Publication
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
Abstract
Cardiac auscultation is one of the most cost-effective techniques used to detect and identify many heart conditions. Computer-assisted decision systems based on auscultation can support physicians in their decisions. Unfortunately, the application of such systems in clinical trials is still minimal since most of them only aim to detect the presence of extra or abnormal waves in the phonocardiogram signal, i.e., only a binary ground truth variable (normal vs abnormal) is provided. This is mainly due to the lack of large publicly available datasets, where a more detailed description of such abnormal waves (e.g., cardiac murmurs) exists. To pave the way to more effective research on healthcare recommendation systems based on auscultation, our team has prepared the currently largest pediatric heart sound dataset. A total of 5282 recordings have been collected from the four main auscultation locations of 1568 patients, in the process, 215780 heart sounds have been manually annotated. Furthermore, and for the first time, each cardiac murmur has been manually annotated by an expert annotator according to its timing, shape, pitch, grading, and quality. In addition, the auscultation locations where the murmur is present were identified as well as the auscultation location where the murmur is detected more intensively. Such detailed description for a relatively large number of heart sounds may pave the way for new machine learning algorithms with a real-world application for the detection and analysis of murmur waves for diagnostic purposes.
2022
Authors
Oliveira, J; Nogueira, DM; Ferreira, CA; Jorge, AM; Coimbra, MT;
Publication
44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, EMBC 2022, Glasgow, Scotland, United Kingdom, July 11-15, 2022
Abstract
Cardiac auscultation is the key exam to screen cardiac diseases both in developed and developing countries. A heart sound auscultation procedure can detect the presence of murmurs and point to a diagnosis, thus it is an important first-line assessment and also cost-effective tool. The design automatic recommendation systems based on heart sound auscultation can play an important role in boosting the accuracy and the pervasiveness of screening tools. One such as step, consists in detecting the fundamental heart sound states, a process known as segmentation. A faulty segmentation or a wrong estimation of the heart rate might result in an incapability of heart sound classifiers to detect abnormal waves, such as murmurs. In the process of understanding the impact of a faulty segmentation, several common heart sound segmentation errors are studied in detail, namely those where the heart rate is badly estimated and those where S1/S2 and Systolic/Diastolic states are swapped in comparison with the ground truth state sequence. From the tested algorithms, support vector machine (SVMs) and random forest (RFs) shown to be more sensitive to a wrong estimation of the heart rate (an expected drop of 6% and 8% on the overall performance, respectively) than to a swap in the state sequence of events (an expected drop of 1.9% and 4.6%, respectively).
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.