Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I am a lecturer in the Department of Computer Science, School of Sciences of University of Porto, Portugal. I obtained a B.Sc. degree in Computer Science from State University of Rio de Janeiro, Brazil, in 1985, and an M.Sc. degree in the Systems Engineering and Computer Science department of Federal University of Rio de Janeiro, Brazil, in 1988. My Ph.D. degree was obtained from Bristol University, UK, in 1995. In 1998, I started as a lecturer in the Department of Systems Engineering and Computer Science of COPPE, an institution for postgraduate studies in Engineering, at Federal University of Rio de Janeiro, where I taught courses on Operating Systems, Concurrent Programming and Topics on High Performance Computing, at M.Sc. and Ph.D. levels, and Artificial Intelligence and Logic Programming, at undergraduate level. In Februrary 2007 I moved to Portugal where I am now located. During the periods between October 2001 and December 2002, April 2004 and March 2005, Aug 2010 and Feb 2011, and Oct 2014 and Mar 2015, I worked as a visiting researcher at University of Wisconsin-Madison, USA, in the department of Biostatistics and Medical Informatics, and at the Radiology Department of the School of Sciences and Public Health. During these periods, I worked for machine learning projects funded by NSF, DARPA and American Air Force (projects COLLEAGUE, EELD and EAGLE), and NLM (Project ABLe) and started to work with applications that demanded a huge amount of resources. At this time, I had the opportunity to work with the Condor team, and to largely use the Condor resource manager to run experiments. My main research areas are Logic programming, Inductive Logic Programming, and Parallel Logic Programming systems. I served as Program Comittee member of several workshops and conferences in these areas. I supervised several M.Sc. and Ph.D. students in these areas. I have more than 80 publications in conferences and journals. I also participated or was the principal investigator of several projects funded by CNPq (Brazil), FCT (Portugal) and the EU. I am a member of the EELA (E-science grid facility for Europe and Latin America) initiative, whose main objective is to promote and maintain the infrastructure of hardware and software between Europe and Latin America. Currently, I have been working on machine learning techniques based on Inductive Logic programming, but still using parallelzation and grid environments to be able to perform machine learning experiments.

Interest
Topics
Details

Details

  • Name

    Inês Dutra
  • Role

    External Research Collaborator
  • Since

    01st January 2009
003
Publications

2026

Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part IX

Authors
Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publication
ECML/PKDD (9)

Abstract

2026

Machine Learning and Knowledge Discovery in Databases. Research Track and Applied Data Science Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part VIII

Authors
Pfahringer, B; Japkowicz, N; Larrañaga, P; Ribeiro, RP; Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publication
ECML/PKDD (8)

Abstract

2026

Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track and Demo Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part X

Authors
Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Pasquali, A; Moniz, N; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publication
ECML/PKDD (10)

Abstract

2025

A Risk Manager for Intrusion Tolerant Systems: Enhancing HAL 9000 With New Scoring and Data Sources

Authors
Freitas, T; Novo, C; Dutra, I; Soares, J; Correia, ME; Shariati, B; Martins, R;

Publication
SOFTWARE-PRACTICE & EXPERIENCE

Abstract
Background Intrusion Tolerant Systems (ITS) aim to maintain system security despite adversarial presence by limiting the impact of successful attacks. Current ITS risk managers rely heavily on public databases like NVD and Exploit DB, which suffer from long delays in vulnerability evaluation, reducing system responsiveness.Objective This work extends the HAL 9000 Risk Manager to integrate additional real-time threat intelligence sources and employ machine learning techniques to automatically predict and reassess vulnerability risk scores, addressing limitations of existing solutions.Methods A custom-built scraper collects diverse cybersecurity data from multiple Open Source Intelligence (OSINT) platforms, such as NVD, CVE, AlienVault OTX, and OSV. HAL 9000 uses machine learning models for CVE score prediction, vulnerability clustering through scalable algorithms, and reassessment incorporating exploit likelihood and patch availability to dynamically evaluate system configurations.Results Integration of newly scraped data significantly enhances the risk management capabilities, enabling faster detection and mitigation of emerging vulnerabilities with improved resilience and security. Experiments show HAL 9000 provides lower risk and more resilient configurations compared to prior methods while maintaining scalability and automation.Conclusions The proposed enhancements position HAL 9000 as a next-generation autonomous Risk Manager capable of effectively incorporating diverse intelligence sources and machine learning to improve ITS security posture in dynamic threat environments. Future work includes expanding data sources, addressing misinformation risks, and real-world deployments.

2025

Anomaly Detection and Root Cause Analysis in Cloud-Native Environments Using Large Language Models and Bayesian Networks

Authors
Pedroso, DF; Almeida, L; Pulcinelli, LEG; Aisawa, WAA; Dutra, I; Bruschi, SM;

Publication
IEEE ACCESS

Abstract
Cloud computing technologies offer significant advantages in scalability and performance, enabling rapid deployment of applications. The adoption of microservices-oriented architectures has introduced an ecosystem characterized by an increased number of applications, frameworks, abstraction layers, orchestrators, and hypervisors, all operating within distributed systems. This complexity results in the generation of vast quantities of logs from diverse sources, making the analysis of these events an inherently challenging task, particularly in the absence of automation. To address this issue, Machine Learning techniques leveraging Large Language Models (LLMs) offer a promising approach for dynamically identifying patterns within these events. In this study, we propose a novel anomaly detection framework utilizing a microservices architecture deployed on Kubernetes and Istio, enhanced by an LLM model. The model was trained on various error scenarios, with Chaos Mesh employed as an error injection tool to simulate faults of different natures, and Locust used as a load generator to create workload stress conditions. After an anomaly is detected by the LLM model, we employ a dynamic Bayesian network to provide probabilistic inferences about the incident, proving the relationships between components and assessing the degree of impact among them. Additionally, a ChatBot powered by the same LLM model allows users to interact with the AI, ask questions about the detected incident, and gain deeper insights. The experimental results demonstrated the model's effectiveness, reliably identifying all error events across various test scenarios. While it successfully avoided missing any anomalies, it did produce some false positives, which remain within acceptable limits.