Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Duarte Dias is a Biomedical Engineer at INESC TEC and the Coordination Assistant of the Center for Biomedical Engineering (CBER). He is also an invited teacher at the Faculty of Engineering of University of Porto. He has a transversal expertise in wearable health devices, human physiology, hardware and firmware development, signal processing and data analysis. He is co-author in more than ten scientific publications, including a first-author review in “Sensors” related with Wearable Health Devices with more than 100 citations. His interest for entrepreneurship and technology transfer lead him to support and be involved in the creation of two spin-offs at INESC TEC.

Details

Details

  • Name

    Duarte Filipe Dias
  • Role

    Assistant Centre Coordinator
  • Since

    01st March 2015
027
Publications

2024

Map-matching methods in agriculture

Authors
Silva, A; Mendes Moreira, J; Ferreira, C; Costa, N; Dias, D;

Publication
COMPUTERS AND ELECTRONICS IN AGRICULTURE

Abstract
In this paper, a solution to monitor the location of humans during their activity in the agriculture sector with the aim to boost productivity and efficiency is provided. Our solution is based on map-matching methods, that are used to track the path spanned by a worker along a specific activity in an agriculture culture. Two different cultures are taken into consideration in this study olives and vines. We leverage the symmetry of the geometry of these cultures into our solution and divide the problem three-fold initially, we estimate a path of a worker along the fields, then we apply the map-matching to such path and finally, a post-processing method is applied to ensure local continuity of the sequence obtained from map-matching. The proposed methods are experimentally evaluated using synthetic and real data in the region of Mirandela, Portugal. Evaluation metrics show that results for synthetic data are robust under several sampling periods, while for real-world data, results for the vine culture are on par with synthetic, and for the olive culture performance is reduced.

2024

Assessing the perceptual equivalence of a firefighting training exercise across virtual and real environments

Authors
Narciso, D; Melo, M; Rodrigues, S; Dias, D; Cunha, J; Vasconcelos Raposo, J; Bessa, M;

Publication
VIRTUAL REALITY

Abstract
The advantages of Virtual Reality (VR) over traditional training, together with the development of VR technology, have contributed to an increase in the body of literature on training professionals with VR. However, there is a gap in the literature concerning the comparison of training in a Virtual Environment (VE) with the same training in a Real Environment (RE), which would contribute to a better understanding of the capabilities of VR in training. This paper presents a study with firefighters (N = 12) where the effect of a firefighter training exercise in a VE was evaluated and compared to that of the same exercise in a RE. The effect of environments was evaluated using psychophysiological measures by evaluating the perception of stress and fatigue, transfer of knowledge, sense of presence, cybersickness, and the actual stress measured through participants' Heart Rate Variability (HRV). The results showed a similar perception of stress and fatigue between the two environments; a positive, although not significant, effect of the VE on the transfer of knowledge; the display of moderately high presence values in the VE; the ability of the VE not to cause symptoms of cybersickness; and finally, obtaining signs of stress in participants' HRV in the RE and, to a lesser extent, signs of stress in the VE. Although the effect of the VE was shown to be non-comparable to that of the RE, the authors consider the results encouraging and discuss some key factors that should be addressed in the future to improve the results of the training VE.

2024

PPG-Based Real-Time Blood Pressure Monitoring using Reflective Pulse Transit Time: Rest vs. Exercise Evaluation

Authors
Aslani, R; Dias, D; Cunha, JPS;

Publication
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024

Abstract
Direct blood pressure (BP) measurements require cuff compression, which not only is time-consuming but also inconvenient for frequent monitoring. This study addresses the challenge of continuous BP estimation (both Systolic (SBP) and Diastolic (DBP)) during exercise in a cuff-less manner, utilizing photoplethysmography (PPG) signals acquired by low-cost wearables. Leveraging Reflective Pulse-wave Transit Time (R-PTT), state-of-the-art algorithms were put to the test in two datasets (total subjects = 18). DATASET1 contains PPG signal and BP measurements of subjects in resting state, while DATASET2 comprises data of subjects in resting state and during exercise. The results reveal competitive performance, with Mean Absolute Error (MAE) of the estimation algorithm for DATASET1 being SBP=7.9 mmHg and DBP=5.2 mmHg and SBP=14.4 mmHg and DBP=7.7 mmHg for DATASET2. DATASET1 consistently outperforms DATASET2, affirming the algorithm's efficacy during resting states and that estimation during physical activity introduces challenges, requiring further refinement and research for real-world applications. In conclusion, this research unveils a viable solution for continuous cuff-less BP monitoring, while emphasizing the need for refinement and validation to enhance its clinical applicability and accessibility.

2024

A Wearable Quantified Approach to Parkinson's Disease Gait Motor Symptoms

Authors
Arrais, A; Vieira, RD; Dias, D; Soares, C; Massano, J; Cunha, JPS;

Publication
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024

Abstract
The progressive and complex nature of Parkinson's disease (PD) may largely benefit from regular and personalised monitoring, which is beyond the current clinical practice and routinely available systems. This paper proposes a simple and effective system to address this issue by using a wearable device to quantify a key PD's motor symptom - gait impairment as a proof-of-concept for a future broader approach. In this study, 60 inertial signals were collected from the ankle in 41 PD patients during a clinical standard gait assessment exercise. Each exercise iteration was classified by a specialised neurologist based on the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). A signal processing and feature extraction pipeline was employed to characterise gait, followed by a statistical analysis of their ability to differentiate between the 5 levels of impairment. The results revealed that 4 of the 8 studied features exhibited high discriminatory power between different severity levels of gait impairment, with statistical significance. The distinguishing capability of these 4 extracted features - gait consistency, rotation angle, mean height and length of steps - holds great promise for the development of a gait severity quantification remote monitoring for PD patients at home or on the move, proving the concept of the usefulness of wearable devices for regular and personalised PD symptom monitoring.

2024

Creating the Next Digital Telemedicine Tool for Parkinson's Disease Management with AI

Authors
Vieira R.D.; Arrais A.; Dias D.; Soares C.; Massano J.; Cunha J.P.S.;

Publication
Bhi 2024 IEEE EMBS International Conference on Biomedical and Health Informatics Proceedings

Abstract
Parkinson's Disease (PD) is a neurological disease that progresses over time and causes severe motor symptoms. Therefore, treating PD requires constant patient monitoring, which may turn clinical practice overwhelming, preventing its practical implementation, and raising the need for patient monitoring outside the clinical setting. The iHandU system described in this paper fulfils this need by providing an objective way to quantify motor symptoms of PD in non-clinical settings. It integrates an innovative real-time assessment of the severity of motor symptoms based on signal processing and Machine Learning models that mimic the clinical severity classification scales used in practice and allows for a more continuous and personalized therapy planning and management by doctors, through the use of a web dashboard user-friendly interface. This system, recently tested at 5 patients' homes, has shown promising results as a PD patient management digital platform, reaching a usability score of 83.9% (A grade) based on the System Usability Scale (SUS). Such a level shows a strong alignment between user needs, expectations and functionalities. This study highlights the potential of the used system as a Patient Management Tool showing a case study from an ongoing clinical study. By giving additional information to the doctors with features beyond the semi-quantitative rating scales currently used, allowing a more optimized and continuous PD symptom management, it will be possible to advance PD management further.