Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Ana F. Sequeira holds a PhD in Electrical and Computing Engineering obtained from the Engineering Faculty of University of Porto, Portugal in 2015. Ana also holds a Master degree in Mathematical Engineering and a 5-years degree in Mathematics, both obtained from the Mathematics Department of the Science Faculty of the University Of Porto, Portugal.

Ana collaborated as a researcher at INESC TEC, a R&D institute affiliated to the University of Porto, within the Visual Computing and Machine Intelligence Group (VCMI) during her PhD studies.

Ana’s PhD studies, in the fields of computer vision and machine learning, focused on liveness detection techniques for iris and fingerprint. This research equipped Ana with a deep knowledge and diversified skills regarding the complete image processing and classification pipeline: from the pre-processing methods to the classification/decision step passing through the application of feature extraction techniques.

The post-doctoral research was pursued at the University of Reading, UK, collaborating in EU projects related to the application of biometric recognition in Border Control (FASTPASS and PROTECT projects).

This activity was followed by a short term collaboration with the company Iris Guard UK in order to research on the vulnerabilities of EyePay® technology’s to spoofing and to develop a proof-of-concept of an anti-spoofing measure.

Currently, Ana is back at INESC TEC as a Research Assistant.

During Ana’s activity as PhD and PDRA, she authored and co-authored several research publications in major international conferences and journals which attracted, to the date, over 150 citations.

Throughout her research activity, Ana developed expertise not only in computer vision/image processing topics but as well in the application of diversified machine learning techniques, from classic to deep learning methodologies.

Interest
Topics
Details

Details

  • Name

    Ana Filipa Sequeira
  • Role

    Area Manager
  • Since

    23rd February 2011
003
Publications

2026

Deciphering the Silent Signals: Unveiling Frequency Importance for Wi-Fi-Based Human Pose Estimation with Explainability

Authors
Capozzi, L; Ferreira, L; Gonçalves, T; Rebelo, A; Cardoso, JS; Sequeira, AF;

Publication
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT II

Abstract
The rapid advancement of wireless technologies, particularly Wi-Fi, has spurred significant research into indoor human activity detection across various domains (e.g., healthcare, security, and industry). This work explores the non-invasive and cost-effective Wi-Fi paradigm and the application of deep learning for human activity recognition using Wi-Fi signals. Focusing on the challenges in machine interpretability, motivated by the increase in data availability and computational power, this paper uses explainable artificial intelligence to understand the inner workings of transformer-based deep neural networks designed to estimate human pose (i.e., human skeleton key points) from Wi-Fi channel state information. Using different strategies to assess the most relevant sub-carriers (i.e., rollout attention and masking attention) for the model predictions, we evaluate the performance of the model when it uses a given number of sub-carriers as input, selected randomly or by ascending (high-attention) or descending (low-attention) order. We concluded that the models trained with fewer (but relevant) sub-carriers are competitive with the baseline (trained with all sub-carriers) but better in terms of computational efficiency (i.e., processing more data per second).

2025

FX-MAD: Frequency-domain Explainability and Explainability-driven Unsupervised Detection of Face Morphing Attacks

Authors
Huber, M; Neto, PC; Sequeira, AF; Damer, N;

Publication
2025 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS, WACVW

Abstract
Face recognition (FR) systems are vulnerable to morphing attacks, which refer to face images created by morphing the facial features of two different identities into one face image to create an image that can match both identities, allowing serious security breaches. In this work, we apply a frequency-based explanation method from the area of explainable face recognition to shine a light on how FR models behave when processing a bona fide or attack pair from a frequency perspective. In extensive experiments, we used two different state-of-the-art FR models and six different morphing attacks to investigate possible differences in behavior. Our results show that FR models rely differently on different frequency bands when making decisions for bona fide pairs and morphing attacks. In the following step, we show that this behavioral difference can be used to detect morphing attacks in an unsupervised setup solely based on the observed frequency-importance differences in a generalizable manner.

2025

An Integrated and User-Friendly Platform for the Deployment of Explainable Artificial Intelligence Methods Applied to Face Recognition

Authors
Albuquerque, C; Neto, PC; Gonc, T; Sequeira, AF;

Publication
HCI FOR CYBERSECURITY, PRIVACY AND TRUST, HCI-CPT 2025, PT II

Abstract
Face recognition technology, despite its advancements and increasing accuracy, still presents significant challenges in explainability and ethical concerns, especially when applied in sensitive domains such as surveillance, law enforcement, and access control. The opaque nature of deep learning models jeopardises transparency, bias, and user trust. Concurrently, the proliferation of web applications presents a unique opportunity to develop accessible and interactive tools for demonstrating and analysing these complex systems. These tools can facilitate model decision exploration with various images, aiding in bias mitigation or enhancing users' trust by allowing them to see the model in action and understand its reasoning. We propose an explainable face recognition web application designed to support enrolment, identification, authentication, and verification while providing visual explanations through pixel-wise importance maps to clarify the model's decision-making process. The system is built in compliance with the European Union General Data Protection Regulation, ensuring data privacy and user control over personal information. The application is also designed for scalability, capable of efficiently managing large datasets. Load tests conducted on databases containing up to 1,000,000 images confirm its efficiency. This scalability ensures robust performance and a seamless user experience even with database growth.

2025

Balancing Beyond Discrete Categories: Continuous Demographic Labels for Fair Face Recognition

Authors
Neto, PC; Damer, N; Cardoso, JS; Sequeira, AF;

Publication
CoRR

Abstract

2025

How Knowledge Distillation Mitigates the Synthetic Gap in Fair Face Recognition

Authors
Neto, PC; Colakovic, I; Karakatic, S; Sequeira, AF;

Publication
COMPUTER VISION-ECCV 2024 WORKSHOPS, PT XX

Abstract
Leveraging the capabilities of Knowledge Distillation (KD) strategies, we devise a strategy to fight the recent retraction of face recognition datasets. Given a pretrained Teacher model trained on a real dataset, we show that carefully utilising synthetic datasets, or a mix between real and synthetic datasets to distil knowledge from this teacher to smaller students can yield surprising results. In this sense, we trained 33 different models with and without KD, on different datasets, with different architectures and losses. And our findings are consistent, using KD leads to performance gains across all ethnicities and decreased bias. In addition, it helps to mitigate the performance gap between real and synthetic datasets. This approach addresses the limitations of synthetic data training, improving both the accuracy and fairness of face recognition models.