2025
Autores
Silva, R; Ramos, G; Salimi, F;
Publicação
SN Computer Science
Abstract
The main goal of this paper was to develop, implement, and test a practical framework for large-scale last-mile delivery problems that employ a combination of optimisation and machine learning while focussing on different routing methods. Delivery companies in big cities choose delivery orders based on the tacit knowledge of experienced drivers, since solving a large optimisation model with several variables is not a practical solution to meet their daily needs. This framework includes three phases of districting, sequencing, and routing, and in total 30 different variants were tested in different capacities. Using the power of machine learning, a model is trained and tuned to predict driving road distances, allowing the implementation of the whole framework and improving performance from analysing 2983 stops in several hours to 58,192 stops in less than 15 minutes. The results demonstrated that Inter 1 - Centroids is the best inter-district connection method, and one of the best variants in this framework is variant 26 which managed to decrease up to 34,77% total distances with 79 fewer drivers in a full month analysis compared to the original routes of the delivery company. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025.
2025
Autores
Nandi, S; Malta, MC; Maji, G; Dutta, A;
Publicação
KNOWLEDGE AND INFORMATION SYSTEMS
Abstract
Influential nodes are the important nodes that most efficiently control the propagation process throughout the network. Among various structural-based methods, degree centrality, k-shell decomposition, or their combination identify influential nodes with relatively low computational complexity, making them suitable for large-scale network analysis. However, these methods do not necessarily explore nodes' underlying structure and neighboring information, which poses a significant challenge for researchers in developing timely and efficient heuristics considering appropriate network characteristics. In this study, we propose a new method (IC-SNI) to measure the influential capability of the nodes. IC-SNI minimizes the loopholes of the local and global centrality and calculates the topological positional structure by considering the local and global contribution of the neighbors. Exploring the path structural information, we introduce two new measurements (connectivity strength and effective distance) to capture the structural properties among the neighboring nodes. Finally, the influential capability of a node is calculated by aggregating the structural and neighboring information of up to two-hop neighboring nodes. Evaluated on nine benchmark datasets, IC-SNI demonstrates superior performance with the highest average ranking correlation of 0.813 with the SIR simulator and a 34.1% improvement comparing state-of-the-art methods in identifying influential spreaders. The results show that IC-SNI efficiently identifies the influential spreaders in diverse real networks by accurately integrating structural and neighboring information.
2025
Autores
Morgado, L;
Publicação
CoRR
Abstract
This work reflects upon what Immersion can mean from the perspective of an Artificial Intelligence (AI). Applying the lens of immersive learning theory, it seeks to understand whether this new perspective supports ways for AI participation in cognitive ecologies. By treating AI as a participant rather than a tool, it explores what other participants (humans and other AIs) need to consider in environments where AI can meaningfully engage and contribute to the cognitive ecology, and what the implications are for designing such learning environments. Drawing from the three conceptual dimensions of immersion—System, Narrative, and Agency—this work reinterprets AIs in immersive learning contexts. It outlines practical implications for designing learning environments where AIs are surrounded by external digital services, can interpret a narrative of origins, changes, and structural developments in data, and dynamically respond, making operational and tactical decisions that shape human-AI collaboration. Finally, this work suggests how these insights might influence the future of AI training, proposing that immersive learning theory can inform the development of AIs capable of evolving beyond static models. This paper paves the way for understanding AI as an immersive learner and participant in evolving human-AI cognitive ecosystems. © 2025 Elsevier B.V., All rights reserved.
2025
Autores
Mazur, PG; Gamer, FC; Ramos, AG; Schoder, D;
Publicação
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH
Abstract
At the practical level, the static stability constraint is one of the most important constraints in practical pallet loading problems, such as air cargo palletizing. Approaches to modeling static stability, which range from base support and mechanical equilibrium calculations to physical simulation, differ in workflow, focus, and assumptions, so choosing the right static stability approach has a substantial impact on the quality of the solution and, ultimately, on loading security. To date, little research has investigated the structural differences between approaches. The aim of this paper is to integrate knowledge and shed light on the applicability of the different approaches for the practical scenario of air cargo palletizing. We tackle this problem through (1) a reformulation and extension of static stability toward loading stability, (2) a conceptual analysis of current approaches, and (3) benchmarking that employs an independent multibody simulation on multiple heterogeneous datasets. Our results show that all approaches are prone to structure errors and vary significantly in their premises and information usage. Further, full base support is revealed to be the most restrictive approach by far, while physical simulation achieves the greatest accuracy. Given the trade-off between accuracy and runtime, the mechanical equilibrium approach is a good choice, while partial base support performs best for lower support values.
2025
Autores
Grazi, L; Feijoo Alonso, A; Gasiorek, A; Pertusa Llopis, AM; Grajeda, A; Kanakis, A; Rodriguez Vidal, A; Parri, A; Vidal, F; Ergas, I; Zeljkovic, I; Durá, JP; Mein, JP; Katsampiris Salgado, K; Rocha, F; Rodriguez, LN; Petry, R; Neufeld, M; Dimitropoulos, N; Köster, N; Mimica, R; Fernandes, SV; Crea, S; Makris, S; Giartzas, S; Settler, V; Masood, J;
Publicação
Electronics (Switzerland)
Abstract
Small to medium-sized shipyards play a crucial role in the European naval industry. However, the globalization of technology has increased competition, posing significant challenges to shipyards, particularly in domestic markets for short sea, work, and inland vessels. Many shipyard operations still rely on manual, labor-intensive tasks performed by highly skilled operators. In response, the adoption of new tools is essential to enhance efficiency and competitiveness. This paper presents a methodology for developing a human-centric portfolio of advanced technologies tailored for shipyard environments, covering processes such as shipbuilding, retrofitting, outfitting, and maintenance. The proposed technological solutions, which have achieved high technology readiness levels, include 3D modeling and digitalization, robotics, augmented and virtual reality, and occupational exoskeletons. Key findings from real-scale demonstrations are discussed, along with major development and implementation challenges. Finally, best practices and recommendations are provided to support both technology developers seeking fully tested tools and end users aiming for seamless adoption. © 2025 by the authors.
2025
Autores
García-Méndez, S; de Arriba-Pérez, F; Leal, F; Veloso, B; Malheiro, B; Burguillo-Rial, JC;
Publicação
SCIENTIFIC REPORTS
Abstract
The public transportation sector generates large volumes of sensor data that, if analyzed adequately, can help anticipate failures and initiate maintenance actions, thereby enhancing quality and productivity. This work contributes to a real-time data-driven predictive maintenance solution for Intelligent Transportation Systems. The proposed method implements a processing pipeline comprised of sample pre-processing, incremental classification with Machine Learning models, and outcome explanation. This novel online processing pipeline has two main highlights: (i) a dedicated sample pre-processing module, which builds statistical and frequency-related features on the fly, and (ii) an explainability module. This work is the first to perform online fault prediction with natural language and visual explainability. The experiments were performed with the Metropt data set from the metro operator of Porto, Portugal. The results are above 98 % for f-measure and 99 % for accuracy. In the context of railway predictive maintenance, achieving these high values is crucial due to the practical and operational implications of accurate failure prediction. In the specific case of a high f-measure, this ensures that the system maintains an optimal balance between detecting the highest possible number of real faults and minimizing false alarms, which is crucial for maximizing service availability. Furthermore, the accuracy obtained enables reliability, directly impacting cost reduction and increased safety. The analysis demonstrates that the pipeline maintains high performance even in the presence of class imbalance and noise, and its explanations effectively reflect the decision-making process. These findings validate the methodological soundness of the approach and confirm its practical applicability for supporting proactive maintenance decisions in real-world railway operations. Therefore, by identifying the early signs of failure, this pipeline enables decision-makers to understand the underlying problems and act accordingly swiftly.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.