Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

Evaluating Llama 3 for Text Simplification: A Study on Wikipedia Lead Sections

Autores
Rodrigues, JF; Cardoso, HL; Lopes, CT;

Publicação
COMPANION PROCEEDINGS OF THE ACM WEB CONFERENCE 2025, WWW COMPANION 2025

Abstract
Text simplification converts complex text into simpler language, improving readability and comprehension. This study evaluates the effectiveness of open-source large language models for text simplification across various categories. We created a dataset of 66,620 lead section pairs from English and Simple English Wikipedia, spanning nine categories, and tested Llama 3 for text simplification. We assessed its output for readability, simplicity, and meaning preservation. Results show improved readability, with simplification varying by category. Texts on Time were the most shortened, while Leisurerelated texts had the greatest reduction of words/characters and syllables per sentence. Meaning preservation was most effective for the Objects and Education categories.

2025

A Personalized Digital Solution to Assist Task Organization and Time Management for People with Attention Deficit/Hyperactivity Disorder (ADHD)

Autores
Oliveira, J; Rocha, T; Barroso, J;

Publicação
Technology for Inclusion and Participation for All: Recent Achievements and Future Directions

Abstract

2025

Program Synthesis Using Inductive Logic Programming for the Abstraction and Reasoning Corpus

Autores
Rocha, FM; Dutra, I; Costa, VS;

Publicação
INTELLIGENZA ARTIFICIALE

Abstract
The Abstraction and Reasoning Corpus (ARC-AGI) is an Artificial General Intelligence benchmark that is currently unsolved. It demands strong generalization and reasoning capabilities, which are known to be weaknesses of Neural Network based systems. In this work, we propose a Program synthesis system to solve it, which casts an ARC-AGI task as a sequence of Inductive Logic Programming tasks. We have implemented a simple Domain Specific Language that corresponds to a small set of object-centric abstractions relevant to the benchmark. This allows for adequate representations to be used to create logic programs, which provide reasoning capabilities to our system. When solving each task, the proposed system can generalize from a few training pairs of input-output grids. The obtained logic programs are able to generate objects present in the output grids and can transform the test input grid into the output grid solution. We developed our system based on some ARC-AGI tasks that do not require more than the small number of primitives that we implemented and showed that our system can solve unseen tasks that require different reasoning.

2025

Cross-Lingual Entity Linking Using GPT Models in Radiology Abstracts

Autores
Dias, M; Lopes, CT;

Publicação
RESEARCH CHALLENGES IN INFORMATION SCIENCE, RCIS 2025, PT II

Abstract
Entity linking is an important task in medical natural language processing (NLP) for converting unstructured text into structured data for clinical analysis and semantic interoperability. However, in lower-resource languages, this task is challenging due to the limited availability of domain-specific resources. This paper explores a translation-based cross-lingual entity linking approach using GPT models, GPT-3.5 and GPT-4o, for zero-shot machine translation and entity linking with in-context learning. We evaluate our approach using a Portuguese-English parallel dataset of radiology abstracts. Our results show that chunk-level machine translation outperforms sentence-level translation. Moreover, our translationbased approach to cross-lingual entity linking of UMLS concepts outperformed the multilingual encoder method baseline. However, the in-context learning entity linking approach did not outperform a translation-based approach with a dictionary-based entity linking method.

2025

Improve Multi-Unmanned Vehicle Environments Through Automated Task Delegation and ROS2 Integration

Autores
Rocha, B; Ramos, F; Costa, NAR; Pires, J; Barroso, JMP; Pereira, J;

Publicação
Proceedings of the 11th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion

Abstract
We present a novel solution for automatic task allocation in multi-device environments, where configured robots compete for task assignment when announcing tasks, minimizing manual intervention. To this end, we propose the specification of a task assignment system and a task-oriented programming method aimed at automating processes and optimizing resource utilization in multiple controller environments. The proposed solution with its market-based algorithm and developed architecture improves the adaptability, scalability and overall efficiency of the system. The research discussion extends to broader implications that are consistent with the overall goal of improving robot capabilities in various deployment scenarios. © 2025 Elsevier B.V., All rights reserved.

2025

C'est Tres CHIC: A Compact Password-Authenticated Key Exchange from Lattice-Based KEM

Autores
Arriaga, A; Barbosa, M; Jarecki, S; Skrobot, M;

Publicação
ADVANCES IN CRYPTOLOGY - ASIACRYPT 2024, PT V

Abstract
Driven by the NIST's post-quantum standardization efforts and the selection of Kyber as a lattice-based Key-Encapsulation Mechanism (KEM), severalPasswordAuthenticated KeyExchange (PAKE) protocols have been recently proposed that leverage a KEM to create an efficient, easy-to-implement and secure PAKE. In two recent works, Beguinet et al. (ACNS 2023) and Pan and Zeng (ASIACRYPT 2023) proposed generic compilers that transform KEM into PAKE, relying on an Ideal Cipher (IC) defined over a group. However, although IC on a group is often used in cryptographic protocols, special care must be taken to instantiate such objects in practice, especially when a low-entropy key is used. To address this concern, Dos Santos et al. (EUROCRYPT 2023) proposed a relaxation of the ICmodel under the Universal Composability (UC) framework called Half-Ideal Cipher (HIC). They demonstrate how to construct a UC-secure PAKE protocol, EKE-KEM, from a KEM and a modified 2round Feistel construction called m2F. Remarkably, the m2F sidesteps the use of an IC over a group, and instead employs an IC defined over a fixed-length bitstring domain, which is easier to instantiate. In this paper, we introduce a novel PAKE protocol called CHIC that improves the communication and computation efficiency of EKE-KEM, by avoiding the HIC abstraction. Instead, we split the KEM public key in two parts and use the m2F directly, without further randomization. We provide a detailed proof of the security of CHIC and establish precise security requirements for the underlying KEM, including one-wayness and anonymity of ciphertexts, and uniformity of public keys. Our findings extend to general KEM-based EKE-style protocols and show that a passively secure KEM is not sufficient. In this respect, our results align with those of Pan and Zeng (ASIACRYPT 2023), but contradict the analyses of KEM-to-PAKE compilers by Beguinet et al. (ACNS 2023) and Dos Santos et al. (EUROCRYPT 2023). Finally, we provide an implementation of CHIC, highlighting its minimal overhead compared to the underlying KEM - Kyber. An interesting aspect of the implementation is that we reuse the rejection sampling procedure in Kyber reference code to address the challenge of hashing onto the public key space. As of now, to the best of our knowledge, CHIC stands as the most efficient PAKE protocol from black-box KEM that offers rigorously proven UC security.

  • 52
  • 4235