2023
Autores
da Silva, DQ; Rodrigues, TF; Sousa, AJ; dos Santos, FN; Filipe, V;
Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II
Abstract
Selective thinning is a crucial operation to reduce forest ignitable material, to control the eucalyptus species and maximise its profitability. The selection and removal of less vigorous stems allows the remaining stems to grow healthier and without competition for water, sunlight and nutrients. This operation is traditionally performed by a human operator and is time-intensive. This work simplifies selective thinning by removing the stem selection part from the human operator's side using a computer vision algorithm. For this, two distinct datasets of eucalyptus stems (with and without foliage) were built and manually annotated, and three Deep Learning object detectors (YOLOv5, YOLOv7 and YOLOv8) were tested on real context images to perform instance segmentation. YOLOv8 was the best at this task, achieving an Average Precision of 74% and 66% on non-leafy and leafy test datasets, respectively. A computer vision algorithm for automatic stem selection was developed based on the YOLOv8 segmentation output. The algorithm managed to get a Precision above 97% and a 81% Recall. The findings of this work can have a positive impact in future developments for automatising selective thinning in forested contexts.
2023
Autores
Carreiro, A; Silva, C; Antunes, M;
Publicação
CENTERIS 2023 - International Conference on ENTERprise Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems and Technologies 2023, Porto, Portugal, November 8-10, 2023.
Abstract
Cybersecurity has a major impact on the healthcare sector, mainly due to the sensitive data and vital medical devices that, when an attack occurs, may compromise the life, safety, and well-being of the patients. However, those institutions fail on implementing correct system protection policies and providing adequate programs for cybersecurity training and raising cybersecurity awareness. Healthcare professionals develop their academic courses focusing on providing the best care for the patients, studying guidelines, treatment protocols, and diagnostic criteria. However, there are insufficient subjects dedicated to the development of digital literacy to match the requisites of the daily challenges of those professionals, with human error being the main cause of data breaches worldwide. So, developing training programs to face the cybersecurity day-to-day threats is mandatory. Broadly speaking, traditional training programs seem to fail on retaining students' motivation, engagement, and long-term knowledge acquisition, being time-consuming and challenging in scheduling and planning. To face this situation, new techniques, such as gamification, have emerged, with promising results on motivation and engagement, allowing the users to be the center of the training programs, matching the strategy to their levels of knowledge and preferences. This paper aims to identify the existing gamified approaches available, review the state-of-the-art related to gamification and cybersecurity training, and elaborates on how they can be successfully applied to training programs for healthcare professionals. © 2024 Elsevier B.V.. All rights reserved.
2023
Autores
Bairrao, D; Soares, J; Almeida, J; Franco, JF; Vale, Z;
Publicação
ENERGIES
Abstract
Hydrogen is a promising commodity, a renewable secondary energy source, and feedstock alike, to meet greenhouse gas emissions targets and promote economic decarbonization. A common goal pursued by many countries, the hydrogen economy receives a blending of public and private capital. After European Green Deal, state members created national policies focused on green hydrogen. This paper presents a study of energy transition considering green hydrogen production to identify Portugal's current state and prospects. The analysis uses energy generation data, hydrogen production aspects, CO2 emissions indicators and based costs. A comprehensive simulation estimates the total production of green hydrogen related to the ratio of renewable generation in two different scenarios. Then a comparison between EGP goals and Portugal's transport and energy generation prospects is made. Portugal has an essential renewable energy matrix that supports green hydrogen production and allows for meeting European green hydrogen 2030-2050 goals. Results suggest that promoting the conversion of buses and trucks into H2-based fuel is better for CO2 reduction. On the other hand, given energy security, thermoelectric plants fueled by H2 are the best option. The aggressive scenario implies at least 5% more costs than the moderate scenario, considering economic aspects.
2023
Autores
Preto, M; Lucas, A; Benedicto, P;
Publicação
Abstract
2023
Autores
Marto, A; Goncalves, A; Melo, M; Bessa, M; Silva, R;
Publicação
JOURNAL OF IMAGING
Abstract
The expansion of augmented reality across society, its availability in mobile platforms and the novelty character it embodies by appearing in a growing number of areas, have raised new questions related to people's predisposition to use this technology in their daily life. Acceptance models, which have been updated following technological breakthroughs and society changes, are known to be great tools for predicting the intention to use a new technological system. This paper proposes a new acceptance model aiming to ascertain the intention to use augmented reality technology in heritage sites-the Augmented Reality Acceptance Model (ARAM). ARAM relies on the use of the Unified Theory of Acceptance and Use of Technology model (UTAUT) model's constructs, namely performance expectancy, effort expectancy, social influence, and facilitating conditions, to which the new and adapted constructs of trust expectancy, technological innovation, computer anxiety and hedonic motivation are added. This model was validated with data gathered from 528 participants. Results confirm ARAM as a reliable tool to determine the acceptance of augmented reality technology for usage in cultural heritage sites. The direct impact of performance expectancy, facilitating conditions and hedonic motivation is validated as having a positive influence on behavioural intention. Trust expectancy and technological innovation are demonstrated to have a positive influence on performance expectancy whereas hedonic motivation is negatively influenced by effort expectancy and by computer anxiety. The research, thus, supports ARAM as a suitable model to ascertain the behavioural intention to use augmented reality in new areas of activity.
2023
Autores
de Jesus, G;
Publicação
ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT III
Abstract
Tetun is one of Timor-Leste's official languages alongside Portuguese. It is a low-resource language with over 932,000 speakers that started developing when Timor-Leste restored its independence in 2002. Newspapers mainly use Tetun and more than ten national online news websites actively broadcast news in Tetun every day. However, since information retrieval-based solutions for Tetun do not exist, finding Tetun information on the internet and digital platforms is challenging. This work aims to investigate and develop solutions that can enable the application of information retrieval techniques to develop search solutions for Tetun using Tetun INL and focus on the ad-hoc text retrieval task. As a result, we expect to have effective search solutions for Tetun and contribute to the innovation in information retrieval for low-resource languages, including making Tetun datasets available for future researchers.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.