Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2024

Reconfiguring Teacher Professionality in Higher Education in Portugal: A Case Study on Pedagogical Innovation and Hybrid Learning

Autores
Cruz, M; Mascarenhas, D; Pinto, CMA; Queirós, R;

Publicação
VIII IEEE WORLD ENGINEERING EDUCATION CONFERENCE, EDUNINE 2024

Abstract
The teaching and learning process in higher education needs continuous cultivation of pedagogical expertise, encompassing subject mastery and pedagogical methodologies. This article explores the transformation of higher education institutions (HEIs) into hybrid campuses and the importance of pedagogical innovation, highlighting the need for training in hybrid/e-learning environments, and emphasizing the potential of mobile technologies. Furthermore, it presents a case study on two professional development courses offered to faculty members, working in the field of Engineering in Portugal, aiming to reconfigure their professionality. The research adopts an ethnographic methodology, integrating quantitative methods and utilizing a variety of data collection tools, including field notes and self-reflection sheets, to analyze the teachers' reconfiguration of their professional practices. The main findings of the study reveal that the majority of faculty members reported significant gains in transforming traditional courses to digital formats, mastering various online platforms and tools, and developing skills in online communication.

2024

Generative Adversarial Networks for Synthetic Meteorological Data Generation

Autores
Viana, D; Teixeira, R; Soares, T; Baptista, J; Pinto, T;

Publicação
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part II

Abstract
This study explores models for synthetic data generation of time series. In order to improve the achieved results, i.e., the data generated, new ways of improvement are explored and different models of synthetic data generation are compared. The model addressed in this work is the Generative Adversarial Networks (GANs), known for generating data similar to the original basis data through the training of a generator. The GANs are applied using the datasets of Quinta de Santa Bárbara and the Pinhão region, with the main variables being the Average temperature, Wind direction, Average wind speed, Maximum instantaneous wind speed and Solar radiation. The model allowed to generate missing data in a given period and, in turn, enables to analyze the results and compare them with those of a multiple linear regression method, being able to evaluate the effectiveness of the generated data. In this way, through the study and analysis of the GANs we can see if the model presents effectiveness and accuracy in the synthetic generation of meteorological data. With the proper conclusions of the results, this information can be used in order to improve the search for different models and the ability to generate synthetic time series data, which is representative of the real, original, data. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

Preface

Autores
Cunha, A; Paiva, A; Pereira, S;

Publicação
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST

Abstract
[No abstract available]

2024

The Iliad digital twins of the ocean: opportunities for citizen science

Autores
Parkinson, S; Ceccaroni, L; Edelist, D; Robertson, E; Horincar, R; Laudy, C; Ganchev, T; Markova, V; Pearlman, J; Simpson, P; Venus, V; Muchada, P; Kazanjian, G; Bye, BL; Oliveira, M; Paredes, H; Sprinks, J; Witter, A; Cruz, B; Das, K; Woods, SM;

Publicação
CHANGE - THE TRANSFORMATIVE POWER OF CITIZEN SCIENCE

Abstract
In recent years, there has been growing interest in digital twins (or virtual representations) of the environment. Programs in the European Union and the UN are investing in digital twins, particularly those of the ocean (DTOs). While citizen science has been mentioned as a potential data source for digital twins, the full potential of citizen science in this context has yet to be fully realised. The Iliad project (https://ocean-twin.eu), funded by the European Commission, is developing a comprehensive set of digital twins of the oceans which are interoperable, data-intensive, and cost-effective. The project (2022-2025) brings together over 50 partners to demonstrate the technologies and methodologies required to develop DTOs. Citizen science and engagement play a pivotal role in the project, with the following goals: (a) exploring the potential for citizen science to contribute to digital twins of the oceans; (b) demonstrating how citizen scientists (and society more broadly) can benefit from digital twins. The Iliad team is currently working on over 20 separate digital twins of the oceans that fall into two primary categories: (i) environmental and ecological digital twins; (ii) engineering and industrial digital twins. Using the Iliad DTOs as case studies, lessons learned for citizen science are presented from the development of each digital twin.

2024

A cooperative coevolutionary hyper-heuristic approach to solve lot-sizing and job shop scheduling problems using genetic programming

Autores
Zeiträg, Y; Figueira, JR; Figueira, G;

Publicação
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH

Abstract
Lot-sizing and scheduling in a job shop environment is a fundamental problem that appears in many industrial settings. The problem is very complex, and solutions are often needed fast. Although many solution methods have been proposed, with increasingly better results, their computational times are not suitable for decision-makers who want solutions instantly. Therefore, we propose a novel greedy heuristic to efficiently generate production plans and schedules of good quality. The main innovation of our approach represents the incorporation of a simulation-based technique, which directly generates schedules while simultaneously determining lot sizes. By utilising priority rules, this unique feature enables us to address the complexity of job shop scheduling environments and ensures the feasibility of the resulting schedules. Using a selection of well-known rules from the literature, experiments on a variety of shop configurations and complexities showed that the proposed heuristic is able to obtain solutions with an average gap to Cplex of 4.12%. To further improve the proposed heuristic, a cooperative coevolutionary genetic programming-based hyper-heuristic has been developed. The average gap to Cplex was reduced up to 1.92%. These solutions are generated in a small fraction of a second, regardless of the size of the instance.

2024

When the tourist home environment is so similar to a distant foreign destination: Evidence of constant vicarious experience effect on college students

Autores
Mou, JJ; Brito, PQ;

Publicação
JOURNAL OF DESTINATION MARKETING & MANAGEMENT

Abstract
Vicarious experiences in tourism possess significant marketing implications. While numerous studies have explored how various forms of vicarious experiences can impact an individual, the role of different time spans as a key factor determining the extent of said impact has been neglected in prior research. To address this gap, the present study thus bridges environmental psychology with the context of tourism and applies the theory of mental representations. An experiment (n = 359) was designed to examine differences in select mental representation dimensions (cognitive, affective, conative, and sensorial) among male and female Chinese college students who have zero/medium/maximum durations of constant vicarious experiences related to European destinations in their home environment. The results indicate that the medium duration of constant vicarious experiences leads to the most positive changes in cognitive and conative dimensions, while the longest constant vicarious experiences produce desirable affective dimension outcomes. Moreover, male college students seem to be more susceptible to the influences of such constant vicarious experiences.

  • 46
  • 4074