2024
Autores
Rocha, J; Pereira, SC; Pedrosa, J; Campilho, A; Mendonça, AM;
Publicação
ARTIFICIAL INTELLIGENCE IN MEDICINE
Abstract
Chest X-ray scans are frequently requested to detect the presence of abnormalities, due to their low-cost and non-invasive nature. The interpretation of these images can be automated to prioritize more urgent exams through deep learning models, but the presence of image artifacts, e.g. lettering, often generates a harmful bias in the classifiers and an increase of false positive results. Consequently, healthcare would benefit from a system that selects the thoracic region of interest prior to deciding whether an image is possibly pathologic. The current work tackles this binary classification exercise, in which an image is either normal or abnormal, using an attention-driven and spatially unsupervised Spatial Transformer Network (STERN), that takes advantage of a novel domain-specific loss to better frame the region of interest. Unlike the state of the art, in which this type of networks is usually employed for image alignment, this work proposes a spatial transformer module that is used specifically for attention, as an alternative to the standard object detection models that typically precede the classifier to crop out the region of interest. In sum, the proposed end-to-end architecture dynamically scales and aligns the input images to maximize the classifier's performance, by selecting the thorax with translation and non-isotropic scaling transformations, and thus eliminating artifacts. Additionally, this paper provides an extensive and objective analysis of the selected regions of interest, by proposing a set of mathematical evaluation metrics. The results indicate that the STERN achieves similar results to using YOLO-cropped images, with reduced computational cost and without the need for localization labels. More specifically, the system is able to distinguish abnormal frontal images from the CheXpert dataset, with a mean AUC of 85.67% -a 2.55% improvement vs. the 0.98% improvement achieved by the YOLO-based counterpart in comparison to a standard baseline classifier. At the same time, the STERN approach requires less than 2/3 of the training parameters, while increasing the inference time per batch in less than 2 ms. Code available via GitHub.
2024
Autores
Pires, F; Moreira, AP; Leitao, P;
Publicação
SERVICE ORIENTED, HOLONIC AND MULTI-AGENT MANUFACTURING SYSTEMS FOR INDUSTRY OF THE FUTURE, SOHOMA 2023
Abstract
The manufacturing domain faces a challenge in making timely decisions due to the large amounts of data generated by digital technologies such as Internet-of-Things, Artificial Intelligence (AI), Digital Twin, and Big Data. By integrating recommendation systems is possible to support the decision-makers in handling large amounts of data by delivering personalised, accurate, and quality recommendations. One example is the SimQL recommendation model that incorporates AI algorithms with trust and similarity measures to enhance recommendation quality. This paper aims to analyse the sensitivity of the SimQL model's parameters, such as dataset conditions, trust and learning factors, and their impact on the final recommendation quality. A fuzzy logic approach is employed to evaluate the model and identify optimal operating conditions for the recommendation system. By implementing the findings of this study, manufacturers can improve the acceptance and adoption of the SimQL trustworthy recommendation system in this field.
2024
Autores
Ferreira V.R.S.; de Paiva A.C.; Silva A.C.; de Almeida J.D.S.; Junior G.B.; Renna F.;
Publicação
International Conference on Enterprise Information Systems, ICEIS - Proceedings
Abstract
This work proposes the use of a deep learning-based adversarial diffusion model to address the translation of contrast-enhanced from non-contrast-enhanced computed tomography (CT) images of the heart. The study overcomes challenges in medical image translation by combining concepts from generative adversarial networks (GANs) and diffusion models. Results were evaluated using the Peak signal to noise ratio (PSNR) and structural index similarity (SSIM) to demonstrate the model's effectiveness in generating contrast images while preserving quality and visual similarity. Despite successes, Root Mean Square Error (RMSE) analysis indicates persistent challenges, highlighting the need for continuous improvements. The intersection of GANs and diffusion models promises future advancements, significantly contributing to clinical practice. The table compares CyTran, CycleGAN, and Pix2Pix networks with the proposed model, indicating directions for improvement.
2024
Autores
Rodrigues, L; Mello, J; Ganesan, K; Silva, R; Villar, J;
Publicação
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024
Abstract
The integration of renewable generation requires new sources of flexibility, including the flexibility from distributed resources that can be unlocked via local flexibility markets (LFMs). In these markets, aggregators (AGGs) offer the flexibility from their portfolios to the flexibility requesting parties (FRP), i.e. system operators or other balancing requesting parties. To bid in LFMs and manage market uncertainty, AGGs must compute the flexibility they are willing to offer at each possible flexibility market price, by optimizing their portfolios. This paper proposes a 2-stage methodology to compute the flexibility bidding curve that an energy community can send to a LFM when behaving as an AGG of its members resources. At stage 1, the energy community (EC) manager computes the optimal EC operation without flexibility provision, minimizing the EC energy bill, and serving as the baseline to verify the flexibility provision. Then, at stage 2, for each possible flexibility price, the EC manager computes the optimal flexibility to be offered, minimizing the EC energy bill but including the flexibility provision incomes, to build the flexibility bidding curve.
2024
Autores
Cunha, M; Duarte, G; Andrade, R; Mendes, R; Vilela, JP;
Publicação
PROCEEDINGS OF THE FOURTEENTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY, CODASPY 2024
Abstract
With the massive data collection from different devices, spanning from mobile devices to all sorts of IoT devices, protecting the privacy of users is a fundamental concern. In order to prevent unwanted disclosures, several Privacy-Preserving Mechanisms (PPMs) have been proposed. Nevertheless, due to the lack of a standardized and universal privacy definition, configuring and evaluating PPMs is quite challenging, requiring knowledge that the average user does not have. In this paper, we propose a privacy toolkit - Privkit - to systematize this process and facilitate automated configuration of PPMs. Privkit enables the assessment of privacy-preserving mechanisms with different configurations, while allowing the quantification of the achieved privacy and utility level of various types of data. Privkit is open source and can be extended with new data types, corresponding PPMs, as well as privacy and utility assessment metrics and privacy attacks over such data. This toolkit is available through a Python Package with several state-of-the-art PPMs already implemented, and also accessible through a Web application. Privkit constitutes a unified toolkit that makes the dissemination of new privacy-preserving methods easier and also facilitates reproducibility of research results, through a repository of Jupyter Notebooks that enable reproduction of research results.
2024
Autores
Kant, K; Beeram, R; Cao, Y; dos Santos, PSS; González-Cabaleiro, L; Garcia-Lojo, D; Guo, H; Joung, YJ; Kothadiya, S; Lafuente, M; Leong, YX; Liu, YY; Liu, YX; Moram, SSB; Mahasivam, S; Maniappan, S; Quesada-González, D; Raj, D; Weerathunge, P; Xia, XY; Yu, Q; Abalde-Cela, S; Alvarez-Puebla, RA; Bardhan, R; Bansal, V; Choo, J; Coelho, LCC; de Almeida, JMMM; Gómez-Graña, S; Grzelczak, M; Herves, P; Kumar, J; Lohmueller, T; Merkoçi, A; Montaño-Priede, JL; Ling, XY; Mallada, R; Pérez-Juste, J; Pina, MP; Singamaneni, S; Soma, VR; Sun, MT; Tian, LM; Wang, JF; Polavarapu, L; Santos, IP;
Publicação
NANOSCALE HORIZONS
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches. This comprehensive review summarizes the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, different chemical and biological analytes, and the expected future technologies.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.