2025
Autores
Rodrigues, M; Antunes, JA; Migueis, V;
Publicação
WASTE MANAGEMENT
Abstract
Municipal solid waste (MSW) management has become a critical issue today, posing substantial economic, environmental, and social challenges. Identifying and analyzing dominant themes in this field is essential for advancing research and policies towards sustainable MSW management practices. This study aims to explore the key issues related to MSW management that have been addressed by both the scientific community and policymakers through funded projects. By doing so, the study seeks to guide the scientific community as a knowledge producer and the EU as a key funder. Two Latent Dirichlet Allocation (LDA) models were applied to analyze the themes from two corpora: one representing scientific literature and another focusing on EU-funded projects. Additionally, this analysis was complemented by a quantitative estimation of the similarity between the two corpora, providing a measure of alignment between the scientific community and policymakers. The results generally indicate that the two spheres are aligned and highlight the diversity of topics explored by the scientific community. Nevertheless, it is concluded that there are opportunities for further research on specific topics, such as leaching and the extraction of heavy metals. Additionally, the popularity of topics identified in European Union-funded projects has fluctuated considerably over time, focusing primarily on waste management rather than its prevention. In light of these findings, waste prevention emerges as a promising avenue for future EU-funded research initiatives.
2025
Autores
Gonçalves, A; Pereira, T; Lopes, D; Cunha, F; Lopes, F; Coutinho, F; Barreiros, J; Durães, J; Santos, P; Simões, F; Ferreira, P; Freitas, DC; Trovão, F; Santos, V; Ferreira, P; Ferreira, M;
Publicação
Automation
Abstract
This paper presents a method for position correction in collaborative robots, applied to a case study in an industrial environment. The case study is aligned with the GreenAuto project and aims to optimize industrial processes through the integration of various hardware elements. The case study focuses on tightening a specific number of nuts onto bolts located on a partition plate, referred to as “Cloison”, which is mounted on commercial vans produced by Stellantis, to secure the plate. The main challenge lies in deviations that may occur in the plate during its assembly process, leading to uncertainties in its fastening to the vehicles. To address this and optimize the process, a collaborative robot was integrated with a 3D vision system and a screwdriving system. By using the 3D vision system, it is possible to determine the bolts’ positions and adjust them within the robot’s frame of reference, enabling the screwdriving system to tighten the nuts accurately. Thus, the proposed method aims to integrate these different systems to tighten the nuts effectively, regardless of the deviations that may arise in the plate during assembly. © 2025 by the authors.
2025
Autores
Sales Mendes, A; Lozano Murciego, Á; Silva, LA; Jiménez Bravo, M; Navarro Cáceres, M; Bernardes, G;
Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
Monodic folk music has traditionally been preserved in physical documents. It constitutes a vast archive that needs to be digitized to facilitate comprehensive analysis using AI techniques. A critical component of music score digitization is the transcription of lyrics, an extensively researched process in Optical Character Recognition (OCR) and document layout analysis. These fields typically require the development of specific models that operate in several stages: first, to detect the bounding boxes of specific texts, then to identify the language, and finally, to recognize the characters. Recent advances in vision language models (VLMs) have introduced multimodal capabilities, such as processing images and text, which are competitive with traditional OCR methods. This paper proposes an end-to-end system for extracting lyrics from images of handwritten musical scores. We aim to evaluate the performance of two state-of-the-art VLMs to determine whether they can eliminate the need to develop specialized text recognition and OCR models for this task. The results of the study, obtained from a dataset in a real-world application environment, are presented along with promising new research directions in the field. This progress contributes to preserving cultural heritage and opens up new possibilities for global analysis and research in folk music. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Autores
Paiva, JC; Leal, JP; Figueira, A;
Publicação
ELECTRONICS
Abstract
Automated assessment tools for programming assignments have become increasingly popular in computing education. These tools offer a cost-effective and highly available way to provide timely and consistent feedback to students. However, when evaluating a logically incorrect source code, there are some reasonable concerns about the formative gap in the feedback generated by such tools compared to that of human teaching assistants. A teaching assistant either pinpoints logical errors, describes how the program fails to perform the proposed task, or suggests possible ways to fix mistakes without revealing the correct code. On the other hand, automated assessment tools typically return a measure of the program's correctness, possibly backed by failing test cases and, only in a few cases, fixes to the program. In this paper, we introduce a tool, AsanasAssist, to generate formative feedback messages to students to repair functionality mistakes in the submitted source code based on the most similar algorithmic strategy solution. These suggestions are delivered with incremental levels of detail according to the student's needs, from identifying the block containing the error to displaying the correct source code. Furthermore, we evaluate how well the automatically generated messages provided by AsanasAssist match those provided by a human teaching assistant. The results demonstrate that the tool achieves feedback comparable to that of a human grader while being able to provide it just in time.
2025
Autores
Almeida, F; Morais, J;
Publicação
E-LEARNING AND DIGITAL MEDIA
Abstract
Non-formal education seeks to address the limitations of formal education that do not reach all communities and do not provide all new competencies and capabilities that are essential for the integrated development of communities. The role of non-formal education becomes even more relevant in the context of developing countries where significant asymmetries in access to education emerge. This study adopts the Solutions Story Tracker provided by the Solutions Journalism Network to identify and explore solutions based on journalism stories in the non-formal education field. A total of 256 stories are identified and categorized into 14 dimensions. The findings reveal that practical, participatory, and volunteering dimensions are the three most common dimensions in these non-formal education initiatives. Furthermore, two emerging dimensions related to empowerment and sustainability are identified, allowing us to extend the theoretical knowledge in the non-formal education field. These conclusions are relevant for establishing public policies that can involve greater participation by local communities in non-formal education and for addressing sustainability challenges through bottom-up initiatives.
2025
Autores
Moreira, G; dos Santos, FN; Cunha, M;
Publicação
SMART AGRICULTURAL TECHNOLOGY
Abstract
Yield forecasting is of immeasurable value in modern viticulture to optimize harvest scheduling and quality management. The number of inflorescences and flowers per vine is one of the main components and their assessment serves as an early predictor, which can explain up to 85-90% of yield variability. This study introduces a sophisticated framework that integrates the benchmark of different advanced deep learning and classic image processing to automate the segmentation of grapevine inflorescences and the detection of single flowers, to achieve precise, early, and non-invasive yield predictions in viticulture. The YOLOv8n model achieved superior performance in localizing inflorescences ( F1-Score (Box) = 95.9%) and detecting individual flowers (F1-Score = 91.4%), while the YOLOv5n model excelled in the segmentation task ( F1-Score (Mask) = 98.6%). The models demonstrated a strong correlation (R-2 > 90.0%) between detected and visible flowers in inflorescences. A statistical analysis confirmed the robustness of the framework, with the YOLOv8 model once again standing out, showing no significant differences in error rates across diverse grapevine morphologies and varieties, ensuring wide applicability. The results demonstrate that these models can significantly improve the accuracy of early yield predictions, offering a noninvasive, scalable solution for Precision Viticulture. The findings underscore the potential for Computer Vision technology to enhance vineyard management practices, leading to better resource allocation and improved crop quality.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.