Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2024

Towards a foundation large events model for soccer

Autores
Mendes Neves, T; Meireles, L; Mendes Moreira, J;

Publicação
MACHINE LEARNING

Abstract
This paper introduces the Large Events Model (LEM) for soccer, a novel deep learning framework for generating and analyzing soccer matches. The framework can simulate games from a given game state, with its primary output being the ensuing probabilities and events from multiple simulations. These can provide insights into match dynamics and underlying mechanisms. We discuss the framework's design, features, and methodologies, including model optimization, data processing, and evaluation techniques. The models within this framework are developed to predict specific aspects of soccer events, such as event type, success likelihood, and further details. In an applied context, we showcase the estimation of xP+, a metric estimating a player's contribution to the team's points earned. This work ultimately enhances the field of sports event prediction and practical applications and emphasizes the potential for this kind of method.

2024

PPG-Based Real-Time Blood Pressure Monitoring using Reflective Pulse Transit Time: Rest vs. Exercise Evaluation

Autores
Aslani, R; Dias, D; Cunha, JPS;

Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024

Abstract
Direct blood pressure (BP) measurements require cuff compression, which not only is time-consuming but also inconvenient for frequent monitoring. This study addresses the challenge of continuous BP estimation (both Systolic (SBP) and Diastolic (DBP)) during exercise in a cuff-less manner, utilizing photoplethysmography (PPG) signals acquired by low-cost wearables. Leveraging Reflective Pulse-wave Transit Time (R-PTT), state-of-the-art algorithms were put to the test in two datasets (total subjects = 18). DATASET1 contains PPG signal and BP measurements of subjects in resting state, while DATASET2 comprises data of subjects in resting state and during exercise. The results reveal competitive performance, with Mean Absolute Error (MAE) of the estimation algorithm for DATASET1 being SBP=7.9 mmHg and DBP=5.2 mmHg and SBP=14.4 mmHg and DBP=7.7 mmHg for DATASET2. DATASET1 consistently outperforms DATASET2, affirming the algorithm's efficacy during resting states and that estimation during physical activity introduces challenges, requiring further refinement and research for real-world applications. In conclusion, this research unveils a viable solution for continuous cuff-less BP monitoring, while emphasizing the need for refinement and validation to enhance its clinical applicability and accessibility.

2024

Achieving rapid and significant results in healthcare services by using the theory of constraints

Autores
Bacelar Silva, GM; Cox, JF III; Rodrigues, P;

Publicação
HEALTH SYSTEMS

Abstract
Lack of timeliness and capacity are seen as fundamental problems that jeopardise healthcare delivery systems everywhere. Many believe the shortage of medical providers is causing this timeliness problem. This action research presents how one doctor implemented the theory of constraints (TOC) to improve the throughput (quantity of patients treated) of his ophthalmology imaging practice by 64% in a few weeks with little to no expense. The five focusing steps (5FS) guided the TOC implementation - which included the drum-buffer-rope scheduling and buffer management - and occurred in a matter of days. The implementation provided significant bottom-line results almost immediately. This article explains each step of the 5FS in general terms followed by specific applications to healthcare services, as well as the detailed use in this action research. Although TOC successfully addressed the practice problems, this implementation was not sustained after the TOC champion left the organisation. However, this drawback provided valuable knowledge. The article provides insightful knowledge to help readers implement TOC in their environments to provide immediate and significant results at little to no expense.

2024

Vision Robotics for the Automatic Assessment of the Diabetic Foot

Autores
Mesquita, R; Costa, T; Coelho, L; Silva, MF;

Publicação
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: ESTABLISHING BRIDGES FOR MORE SUSTAINABLE MANUFACTURING SYSTEMS, FAIM 2023, VOL 1

Abstract
Diabetes, a chronic condition affecting millions of people, requires ongoing medical care and treatment, which can place a significant financial burden on society, directly and indirectly. In this paper we propose a vision-robotics system for the automatic assessment of the diabetic foot, one the exams used for the disease management. We present and discuss various computer vision techniques that can support the core operation of the system. U-Net and Segnet, two popular convolutional network architectures for image segmentation are applied in the current case. Hardcoded and machine learning pipelines are explained and compared using different metrics and scenarios. The obtained results show the advantages of the machine learning approach but also point to the importance of hard coded rules, especially when well know areas, such as the human foot, are the systems' target. Overall, the system achieved very good results, paving the way to a fully automated clinical system.

2024

Thermal analysis for testing underground battery location

Autores
Gonçalves E.S.; Gonçalves J.; Rosse H.; Costa J.; Jorge L.; Gonçalves J.A.; Coelho J.P.; Ribeiro J.E.;

Publicação
Procedia Structural Integrity

Abstract
The energy storage batteries, employed in solar systems installed on lampposts, are usually placed in devices such as switchboards fixed at an elevation near the top of the column. However, this storage solution becomes inefficient, because it is not possible to guarantee the control of the working temperature of the batteries, due to the low thermal insulation capacity of these storage devices. In this sense, an underground compartment made of concrete, steel plate and rock wool were created, embedded in the foundation of the lamppost, with the purpose of using geothermal energy to maintain an adequate temperature inside the compartment. To verify the temperature inside the battery storage compartment, a thermal analysis was performed, where heat transfer by conduction, convection and radiation was considered. Analyses were performed in steady state, and later, transient state, considering the initial temperatures of the thermal study in the previous steady state. With a storage volume of 1m3 and the base of the compartment at a depth of 2m, it was verified that it is possible to use geothermal energy to cool or heat, depending on the season, a system through geothermal energy. Considering a typical day in July, with room temperature of 35oC, a reduction of approximately 8oC was obtained inside the storage compartment, compared to the ambient temperature.

2024

Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images

Autores
Lopes, TRS; Roberto, GF; Soares, C; Tosta, TAA; Silva, AB; Loyola, AM; Cardoso, SV; de Faria, PR; do Nascimento, MZ; Neves, LA;

Publicação
Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2024, Volume 2: VISAPP, Rome, Italy, February 27-29, 2024.

Abstract
In this work, a method based on the use of explainable artificial intelligence techniques with multiscale and multidimensional fractal techniques is presented in order to investigate histological images stained with Hematoxylin-Eosin. The CNN GoogLeNet neural activation patterns were explored, obtained from the gradient-weighted class activation mapping and locally-interpretable model-agnostic explanation techniques. The feature vectors were generated with multiscale and multidimensional fractal techniques, specifically fractal dimension, lacunarity and percolation. The features were evaluated by ranking each entry, using the ReliefF algorithm. The discriminative power of each solution was defined via classifiers with different heuristics. The best results were obtained from LIME, with a significant increase in accuracy and AUC rates when compared to those provided by GoogLeNet. The details presented here can contribute to the development of models aimed at the classification of histological images. © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

  • 332
  • 4312