2024
Autores
Inácio, SI; Pessoa, LM;
Publicação
2024 4TH URSI ATLANTIC RADIO SCIENCE MEETING, AT-RASC 2024
Abstract
This paper presents an optically transparent 2-bit unit-cell for reflective intelligent surface applications in Wi-Fi 6E. The unit-cell is based on a metalmesh and can be reconfigured electronically by adjusting the voltage applied to a varactor diode. The performance of the RIS is demonstrated through simulation, which shows that the results are in good agreement with the theoretical predictions.
2024
Autores
Ghorvei, M; Karhu, T; Hietakoste, S; Ferreira-Santos, D; Hrubos-Strom, H; Islind, AS; Biedebach, L; Nikkonen, S; Leppaenen, T; Rusanen, M;
Publicação
JOURNAL OF SLEEP RESEARCH
Abstract
Obstructive sleep apnea is a heterogeneous sleep disorder with varying phenotypes. Several studies have already performed cluster analyses to discover various obstructive sleep apnea phenotypic clusters. However, the selection of the clustering method might affect the outputs. Consequently, it is unclear whether similar obstructive sleep apnea clusters can be reproduced using different clustering methods. In this study, we applied four well-known clustering methods: Agglomerative Hierarchical Clustering; K-means; Fuzzy C-means; and Gaussian Mixture Model to a population of 865 suspected obstructive sleep apnea patients. By creating five clusters with each method, we examined the effect of clustering methods on forming obstructive sleep apnea clusters and the differences in their physiological characteristics. We utilized a visualization technique to indicate the cluster formations, Cohen's kappa statistics to find the similarity and agreement between clustering methods, and performance evaluation to compare the clustering performance. As a result, two out of five clusters were distinctly different with all four methods, while three other clusters exhibited overlapping features across all methods. In terms of agreement, Fuzzy C-means and K-means had the strongest (kappa = 0.87), and Agglomerative hierarchical clustering and Gaussian Mixture Model had the weakest agreement (kappa = 0.51) between each other. The K-means showed the best clustering performance, followed by the Fuzzy C-means in most evaluation criteria. Moreover, Fuzzy C-means showed the greatest potential in handling overlapping clusters compared with other methods. In conclusion, we revealed a direct impact of clustering method selection on the formation and physiological characteristics of obstructive sleep apnea clusters. In addition, we highlighted the capability of soft clustering methods, particularly Fuzzy C-means, in the application of obstructive sleep apnea phenotyping.
2024
Autores
Rodrigues L.; Soares T.; Rezende I.; Fontoura J.; Miranda V.;
Publicação
International Journal of Hydrogen Energy
Abstract
Power-to-Hydrogen (P2H) clean systems have been increasingly adopted for Virtual Power Plant (VPP) to drive system decarbonization. However, current models for the joint operation of VPP and P2H often disregard the full impact on grid operation or hydrogen supply to multiple consumers. This paper contributes with a VPP operating model considering a full Alternating Current Optimal Power Flow (AC OPF) while integrating different paths for the use of green hydrogen, such as supplying hydrogen to a Combined Heat and Power (CHP), industry and local hydrogen consumers. The proposed framework is tested using a 37-bus distribution grid and the results illustrate the benefits that a P2H plant can bring to the VPP in economic, grid operation and environmental terms. An important conclusion is that depending on the prices of the different hydrogen services, the P2H plant can increase the levels of self-sufficiency and security of supply of the VPP, decrease the operating costs, and integrate more renewables.
2024
Autores
Dumont, M; Correia, CM; Sauvage, JF; Schwartz, N; Gray, M; Cardoso, J;
Publicação
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION
Abstract
Capturing high-resolution imagery of the Earth's surface often calls for a telescope of considerable size, even from low Earth orbits (LEOs). A large aperture often requires large and expensive platforms. For instance, achieving a resolution of 1 m at visible wavelengths from LEO typically requires an aperture diameter of at least 30 cm. Additionally, ensuring high revisit times often prompts the use of multiple satellites. In light of these challenges, a small, segmented, deployable CubeSat telescope was recently proposed creating the additional need of phasing the telescope's mirrors. Phasing methods on compact platforms are constrained by the limited volume and power available, excluding solutions that rely on dedicated hardware or demand substantial computational resources. Neural networks (NNs) are known for their computationally efficient inference and reduced onboard requirements. Therefore, we developed a NN-based method to measure co-phasing errors inherent to a deployable telescope. The proposed technique demonstrates its ability to detect phasing errors at the targeted performance level [typically a wavefront error (WFE) below 15 nm RMS for a visible imager operating at the diffraction limit] using a point source. The robustness of the NN method is verified in presence of high-order aberrations or noise and the results are compared against existing state-of-the-art techniques. The developed NN model ensures its feasibility and provides arealistic pathway towards achieving diffraction-limited images. (c) 2024 Optica Publishing Group
2024
Autores
Prakash, PH; Lopes, JP; Silva, B;
Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024
Abstract
This paper introduces a detailed procedure for executing a black start service from an offshore wind farm (OWF) through the integration of grid-forming (GFM) control. The proposed strategy involves exploiting a grid-forming battery energy storage system (BESS) to deliver black start service within an OWF equipped with grid-following wind turbines. Controller modelling, and operation methodology are explained. To illustrate the efficacy of the suggested control and operation principles, the study employs an OWF as a case study. Simulation analyses are conducted using the Matlab/Simulink software to demonstrate the viability of the presented strategy.
2024
Autores
Oliveira, F; da Silva, DQ; Filipe, V; Pinho, TM; Cunha, M; Cunha, JB; dos Santos, FN;
Publicação
SENSORS
Abstract
Automating pruning tasks entails overcoming several challenges, encompassing not only robotic manipulation but also environment perception and detection. To achieve efficient pruning, robotic systems must accurately identify the correct cutting points. A possible method to define these points is to choose the cutting location based on the number of nodes present on the targeted cane. For this purpose, in grapevine pruning, it is required to correctly identify the nodes present on the primary canes of the grapevines. In this paper, a novel method of node detection in grapevines is proposed with four distinct state-of-the-art versions of the YOLO detection model: YOLOv7, YOLOv8, YOLOv9 and YOLOv10. These models were trained on a public dataset with images containing artificial backgrounds and afterwards validated on different cultivars of grapevines from two distinct Portuguese viticulture regions with cluttered backgrounds. This allowed us to evaluate the robustness of the algorithms on the detection of nodes in diverse environments, compare the performance of the YOLO models used, as well as create a publicly available dataset of grapevines obtained in Portuguese vineyards for node detection. Overall, all used models were capable of achieving correct node detection in images of grapevines from the three distinct datasets. Considering the trade-off between accuracy and inference speed, the YOLOv7 model demonstrated to be the most robust in detecting nodes in 2D images of grapevines, achieving F1-Score values between 70% and 86.5% with inference times of around 89 ms for an input size of 1280 x 1280 px. Considering these results, this work contributes with an efficient approach for real-time node detection for further implementation on an autonomous robotic pruning system.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.