Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

Scaling Personalized Post-Operative Recovery Process Assessment of Total Knee Arthroplasty with Instrumented Implant

Autores
Carlos Rodrigues; Miguel Correia; João Abrantes; Marco Rodrigues; Jurandir Nadal;

Publicação
2025 IEEE 8th Portuguese Meeting on Bioengineering (ENBENG)

Abstract

2025

SIMD Acceleration of Matrix-Vector Operations on RISC-V for Variable Precision Neural Networks

Autores
Salinas, G; Sequeira, G; Rodriguez, A; Bispo, J; Paulino, N;

Publicação
2025 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, IPDPSW

Abstract
The rapid proliferation of Edge AI applications demands efficient, low-power computing architectures tailored to specific workloads. The RISC-V ecosystem is a promising solution, and has led to a fast growth of implementations based on custom instructions extensions, but with varying degrees of functionality and support which may hinder easy adoption. In this paper, we extensively review existing RISC-V extensions targeting primarily the AI domain and respective compilation flows, highlighting challenges in deployment, usability, and compatibility. We further implement and provide usable containerized environments for two of these works. To address the identified challenges, we then propose an approach for lightweight early validation of custom instructions via source-to-source transformations, without need of compiler modifications. We target our own Single Instruction Multiple Data (SIMD) accelerator, which we integrate into a CORE-V cv32e40px baseline core through custom instructions, and versus which we achieve up to 11.9x speedup for matrix-vector operations.

2025

The Robust Vehicle Routing Problem With Synchronization: Models and Branch-And-Cut Algorithms

Autores
Soares, R; Parragh, SN; Marques, A; Amorim, P;

Publicação
NETWORKS

Abstract
The Vehicle Routing Problem with Synchronization (VRPSync) aims to minimise the total routing costs while considering synchronization requirements that must be fulfilled between tasks of different routes. These synchronization requirements are especially relevant when it is necessary to have tasks being performed by vehicles within given temporal offsets, a frequent requirement in applications where multiple vehicles, crews, materials, or other resources are involved in certain operations. Although several works in the literature have addressed this problem, mainly the deterministic version has been tackled so far. This paper presents a robust optimization approach for the VRPSync, taking into consideration the uncertainty in vehicle travel times between customers. This work builds on existing approaches in the literature to develop mathematical models for the Robust VRPSync, as well as a branch-and-cut algorithm to solve more difficult problem instances. A set of computational experiments is also devised and presented to obtain insights regarding key performance parameters of the mathematical models and the solution algorithm. The results suggest that solution strategies where certain standard problem constraints are only introduced if a candidate solution violates any of those constraints provide more consistent improvements than approaches that rely on tailor-made cutting planes, added through separation routines. Furthermore, the analysis of the Price of Robustness indicators shows that the adoption of robust solutions can have a significant increase in the total costs, however, this increase quickly plateaus as budgets of uncertainty increase.

2025

Charting a course at the human–AI frontier: a paradigm matrix informed by social sciences and humanities

Autores
Ramon Chaves; Carlos Eduardo Barbosa; Gustavo Araujo de Oliveira; Alan Lyra; Matheus Argôlo; Herbert Salazar; Yuri Lima; Daniel Schneider; António Correia; Jano Moreira de Souza;

Publicação
AI & SOCIETY

Abstract

2025

Keigo: Co-designing Log-Structured Merge Key-Value Stores with a Non-Volatile, Concurrency-aware Storage Hierarchy (Extended Version)

Autores
Adão, R; Wu, Z; Zhou, C; Balmau, O; Paulo, J; Macedo, R;

Publicação
CoRR

Abstract

2025

Validation of Multi-Subject Whole-Body COM Dynamics Based on 3D Anatomical Kinematics

Autores
Carlos Rodrigues; Miguel Correia; João Abrantes; Marco Rodrigues; Jurandir Nadal;

Publicação
2025 IEEE 8th Portuguese Meeting on Bioengineering (ENBENG)

Abstract

  • 140
  • 4390