2025
Autores
Santo, LP; Bashford-Rogers, T; Barbosa, J; Navrátil, P;
Publicação
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
Abstract
Rendering on conventional computers is capable of generating realistic imagery, but the computational complexity of these light transport algorithms is a limiting factor of image synthesis. Quantum computers have the potential to significantly improve rendering performance through reducing the underlying complexity of the algorithms behind light transport. This article investigates hybrid quantum-classical algorithms for ray tracing, a core component of most rendering techniques. Through a practical implementation of quantum ray tracing in a 3D environment, we show quantum approaches provide a quadratic improvement in query complexity compared to the equivalent classical approach. Based on domain specific knowledge, we then propose algorithms to significantly reduce the computation required for quantum ray tracing through exploiting image space coherence and a principled termination criteria for quantum searching. We show results obtained using a simulator for both Whitted style ray tracing, and for accelerating ray tracing operations when performing classical Monte Carlo integration for area lights and indirect illumination.
2025
Autores
Ramôa, M; Santos, LP; Mayhall, NJ; Barnes, E; Economou, SE;
Publicação
QUANTUM SCIENCE AND TECHNOLOGY
Abstract
Adaptive protocols enable the construction of more efficient state preparation circuits in variational quantum algorithms (VQAs) by utilizing data obtained from the quantum processor during the execution of the algorithm. This idea originated with Adaptive Derivative-Assembled Problem-Tailored variational quantum eigensolver (ADAPT-VQE), an algorithm that iteratively grows the state preparation circuit operator by operator, with each new operator accompanied by a new variational parameter, and where all parameters acquired thus far are optimized in each iteration. In ADAPT-VQE and other adaptive VQAs that followed it, it has been shown that initializing parameters to their optimal values from the previous iteration speeds up convergence and avoids shallow local traps in the parameter landscape. However, no other data from the optimization performed at one iteration is carried over to the next. In this work, we propose an improved quasi-Newton optimization protocol specifically tailored to adaptive VQAs. The distinctive feature in our proposal is that approximate second derivatives of the cost function are recycled across iterations in addition to optimal parameter values. We implement a quasi-Newton optimizer where an approximation to the inverse Hessian matrix is continuously built and grown across the iterations of an adaptive VQA. The resulting algorithm has the flavor of a continuous optimization where the dimension of the search space is augmented when the gradient norm falls below a given threshold. We show that this inter-optimization exchange of second-order information leads the approximate Hessian in the state of the optimizer to be consistently closer to the exact Hessian. As a result, our method achieves a superlinear convergence rate even in situations where the typical implementation of a quasi-Newton optimizer converges only linearly. Our protocol decreases the measurement costs in implementing adaptive VQAs on quantum hardware as well as the runtime of their classical simulation.
2025
Autores
Jose Villar; João Mello;
Publicação
Towards Future Smart Power Systems with High Penetration of Renewables
Abstract
2025
Autores
Rajaoarisoa, L; Randrianandraina, R; Nalepa, GJ; Gama, J;
Publicação
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
Abstract
To maintain the performance of the latest generation of onshore and offshore wind turbine systems, a new methodology must be proposed to enhance the maintenance policy. In this context, this paper introduces an approach to designing a decision support tool that combines predictive capabilities with anomaly explanations for effective IoT predictive maintenance tasks. Essentially, the paper proposes an approach that integrates a predictive maintenance model with an explicative decision-making system. The key challenge is to detect anomalies and provide plausible explanations, enabling human operators to determine the necessary actions swiftly. To achieve this, the proposed approach identifies a minimal set of relevant features required to generate rules that explain the root causes of issues in the physical system. It estimates that certain features, such as the active power generator, blade pitch angle, and the average water temperature of the voltage circuit protection in the generator's sub-components, are particularly critical to monitor. Additionally, the approach simplifies the computation of an efficient predictive maintenance model. Compared to other deep learning models, the identified model provides up to 80% accuracy in anomaly detection and up to 96% for predicting the remaining useful life of the system under study. These performance metrics and indicators values are essential for enhancing the decision-making process. Moreover, the proposed decision support tool elucidates the onset of degradation and its dynamic evolution based on expert knowledge and data gathered through Internet of Things (IoT) technology and inspection reports. Thus, the developed approach should aid maintenance managers in making accurate decisions regarding inspection, replacement, and repair tasks. The methodology is demonstrated using a wind farm dataset provided by Energias De Portugal.
2025
Autores
Apóstolo, D; Santos, MS; Lorena, AC; Abreu, PH;
Publicação
Neurocomputing
Abstract
2025
Autores
Zafra, A; Veloso, B; Gama, J;
Publicação
HYBRID ARTIFICIAL INTELLIGENT SYSTEM, PT I, HAIS 2024
Abstract
Early identification of failures is a critical task in predictive maintenance, preventing potential problems before they manifest and resulting in substantial time and cost savings for industries. We propose an approach that predicts failures in the near future. First, a deep learning model combining long short-term memory and convolutional neural network architectures predicts signals for a future time horizon using real-time data. In the second step, an autoencoder based on convolutional neural networks detects anomalies in these predicted signals. Finally, a verification step ensures that a fault is considered reliable only if it is corroborated by anomalies in multiple signals simultaneously. We validate our approach using publicly available Air Production Unit (APU) data from Porto metro trains. Two significant conclusions emerge from our study. Firstly, experimental results confirm the effectiveness of our approach, demonstrating a high fault detection rate and a reduced number of false positives. Secondly, the adaptability of this proposal allows for the customization of configuration of different time horizons and relationship between the signals to meet specific detection requirements.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.