2025
Autores
Sharma, P; Thapa, K; Dhakal, P; Upadhaya, MD; Thapa, D; Adhikari, S; Khanal, SR; Filipe, V;
Publicação
Communications in Computer and Information Science
Abstract
Artificial intelligence is gaining attraction in more ways than ever before. The popularity of language models and AI-based businesses has soared since ChatGPT was made available to the public via the OpenAI web platform. It gains popularity in a very short period because of its real-world problem-solving capability. Considering the widespread use of ChatGPT and the people relying on it, this study determined how reliable ChatGPT can be used for learning in the medical domain. The capability of ChatGPT was evaluated using the questions of Harvard University gross anatomy and the United States Medical Licensing Examination (USMLE). The outcome of the ChatGPT was analyzed using a 2-way ANOVA and post-hoc analysis. Both tests showed systematic covariation between format and prompt. Furthermore, the physician adjudicators independently rated the outcome’s accuracy, concordance, and insight into the answers given by ChatGPT. As a result of the analysis, ChatGPT-generated answers were more context-oriented and represented a better model for deductive reasoning than regular Google search results. Furthermore, ChatGPT obtained 58.8% on logical questions and 60% on ethical questions. This means that the ChatGPT is approaching the passing range for logical questions and has crossed the threshold for ethical questions. These results indicate that ChatGPT and other language-learning models can be invaluable tools for e-learners. © 2025 Elsevier B.V., All rights reserved.
2025
Autores
Touati, Z; Araújo, RE;
Publicação
IFAC PAPERSONLINE
Abstract
In this paper, a robust nonlinear Super-Twisting Sliding Mode Controller (STSMC) is proposed to minimize torque ripple in Switched Reluctance Motor (SRM) drive systems, thereby reducing acoustic noise and vibration. To optimize torque ripple, the firing angles (theta(on) and theta(off)) are dynamically adjusted based on the instantaneous torque and speed error. To demonstrate its superiority, the performance of the STSMC is compared with conventional linear and Sliding Mode Control (SMC) regulators. The results confirm the robustness and effectiveness of the proposed controller. The torque ripple with PSO-optimized firing angles and STSMC is reduced by around 50% compared to conventional fixed switching angles. Copyright (c) 2025 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
2025
Autores
Ruela, J; Cojocaru, I; Coelho, A; Campos, R; Ricardo, M;
Publicação
CoRR
Abstract
2025
Autores
Zhang, CS; Almpanidis, G; Fan, GJ; Deng, BQ; Zhang, YB; Liu, J; Kamel, A; Soda, P; Gama, J;
Publicação
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
Abstract
Long-tailed data are a special type of multiclass imbalanced data with a very large amount of minority/tail classes that have a very significant combined influence. Long-tailed learning (LTL) aims to build high-performance models on datasets with long-tailed distributions that can identify all the classes with high accuracy, in particular the minority/tail classes. It is a cutting-edge research direction that has attracted a remarkable amount of research effort in the past few years. In this article, we present a comprehensive survey of the latest advances in long-tailed visual learning. We first propose a new taxonomy for LTL, which consists of eight different dimensions, including data balancing, neural architecture, feature enrichment, logits adjustment, loss function, bells and whistles, network optimization, and posthoc processing techniques. Based on our proposed taxonomy, we present a systematic review of LTL methods, discussing their commonalities and alignable differences. We also analyze the differences between imbalance learning and LTL. Finally, we discuss prospects and future directions in this field.
2025
Autores
Karácsony, T; Fearns, N; Birk, D; Trapp, SD; Ernst, K; Vollmar, C; Rémi, J; Jeni, LA; De la Torre, F; Cunha, JPS;
Publicação
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
Epileptic seizure classification based on seizure semiology requires automated, quantitative approaches to support the diagnosis of epilepsy, which affects 1 % of the world's population. Current approaches address the problem on a seizure level, neglecting the detailed evaluation of the classification of the underlying action features, also known as Movements of Interest (MOIs), which are critical for epileptologists in determining their classifications. Moreover, it hinders objective comparison of these approaches and attribution of performance differences due to datasets, intra-dataset MOI distribution, or architecture variations. Objective evaluation of action recognition techniques is crucial, with MOIs serving as foundational elements of semiology for clinical in-bed applications to facilitate epileptic seizure classification. However, until now, there were no MOI datasets available nor benchmarks comparing different action recognition approaches for this clinical problem. Therefore, as a pilot, we introduced a novel, simulated seizure semiology dataset carried out by 8 experienced epileptologists in an EMU bed, consisting of 7 MOI classes. We compare several computer vision methods for MOI classification, two image-based (I3D and Uniformerv2), and two skeleton-based (ST-GCN++ and PoseC3D) action recognition approaches. This study emphasizes the advantages of a 2-stage skeleton-based action recognition approach in a transfer learning setting (4 classes) and the multi-scale challenge of MOI classification (7 classes), advocating for the integration of skeleton-based methods with hand gesture recognition technologies in the future. The study's controlled MOI simulation dataset provides us with the opportunity to advance the development of automated epileptic seizure classification systems, paving the way for enhancing their performance and having the potential to contribute to improved patient care.
2025
Autores
Brito, Walkir, WAT,AT; null; null; Silva, João Sousa, JSE,E; Nunes, Ricardo Rodrigues, RR,; Filipe, Manuel De Jesus, VMDJ,V;
Publicação
Communications in Computer and Information Science
Abstract
This study explores the application of the Lean Inception methodology in developing “EcoRider: Green Adventure,” an educational game aimed at enhancing motorcycle safety and promoting environmental awareness. Funded by the A-MoVeR project under the European Recovery and Resilience Facility, the game educates players on advanced safety technologies such as radars, cameras, LiDAR, and artificial intelligence (AI) algorithms. Players navigate complex urban scenarios, learning to manage potential hazards and promoting ecofriendly urban mobility. Using a qualitative case study approach, the research evaluates the effectiveness of integrating these technologies into the game’s design and gameplay. The game features multiple levels with increasing difficulty, requiring players to strategically place sensors and use AI models to overcome challenges. The application of the Lean Inception methodology has been essential in aligning the development team’s efforts, ensuring a cohesive approach to delivering a minimum viable product that satisfies both educational and technological objectives. Future work will be on refining the game, expanding its scope and exploring additional applications in the wider context of sustainable and safe mobility. © 2025 Elsevier B.V., All rights reserved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.