Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Susana Alexandra Barbosa
  • Cargo

    Investigador Sénior
  • Desde

    12 janeiro 2015
009
Publicações

2026

A framework for supporting the reproducibility of computational experiments in multiple scientific domains

Autores
Costa, L; Barbosa, S; Cunha, J;

Publicação
Future Gener. Comput. Syst.

Abstract
In recent years, the research community, but also the general public, has raised serious questions about the reproducibility and replicability of scientific work. Since many studies include some kind of computational work, these issues are also a technological challenge, not only in computer science, but also in most research domains. Computational replicability and reproducibility are not easy to achieve due to the variety of computational environments that can be used. Indeed, it is challenging to recreate the same environment via the same frameworks, code, programming languages, dependencies, and so on. We propose a framework, known as SciRep, that supports the configuration, execution, and packaging of computational experiments by defining their code, data, programming languages, dependencies, databases, and commands to be executed. After the initial configuration, the experiments can be executed any number of times, always producing exactly the same results. Our approach allows the creation of a reproducibility package for experiments from multiple scientific fields, from medicine to computer science, which can be re-executed on any computer. The produced package acts as a capsule, holding absolutely everything necessary to re-execute the experiment. To evaluate our framework, we compare it with three state-of-the-art tools and use it to reproduce 18 experiments extracted from published scientific articles. With our approach, we were able to execute 16 (89%) of those experiments, while the others reached only 61%, thus showing that our approach is effective. Moreover, all the experiments that were executed produced the results presented in the original publication. Thus, SciRep was able to reproduce 100% of the experiments it could run. © 2025 The Authors

2025

Land Surface Influence on Boundary Layer Air over the Atlantic Ocean from Environmental Radioactivity

Autores
Dias, N; Barbosa, S;

Publicação
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY

Abstract
This study addresses the variability of gamma radiation measurements over the Atlantic Ocean. The analysis of back trajectories shows that the path of the air masses is the main factor determining gamma radiation levels over the ocean, rather than the distance to the coast. Different gamma values were recorded at different times in the same location as a result of the distinct origin of the corresponding air masses. Higher counts observed in the northeast Atlantic in winter compared with the spring values result from air masses coming from Europe and the African continent. In general, gamma radiation values over the ocean increase with increasing continental influence on the air mass above. A predictive classifica-tion model is developed showing that marine gamma observations can be used to classify marine boundary layer air masses according to the degree of continental influence.

2025

Let's Talk About It: Making Scientific Computational Reproducibility Easy

Autores
Costa, L; Barbosa, S; Cunha, J;

Publicação
CoRR

Abstract

2025

CompRep: A Dataset For Computational Reproducibility

Autores
Costa, L; Barbosa, S; Cunha, J;

Publicação
PROCEEDINGS OF THE 3RD ACM CONFERENCE ON REPRODUCIBILITY AND REPLICABILITY, ACM REP 2025

Abstract
Reproducibility in computational science is increasingly dependent on the ability to faithfully re-execute experiments involving code, data, and software environments. However, assessing the effectiveness of reproducibility tools is difficult due to the lack of standardized benchmarks. To address this, we collected 38 computational experiments from diverse scientific domains and attempted to reproduce each using 8 different reproducibility tools. From this initial pool, we identified 18 experiments that could be successfully reproduced using at least one tool. These experiments form our curated benchmark dataset, which we release along with reproducibility packages to support ongoing evaluation efforts. This article introduces the curated dataset, incorporating details about software dependencies, execution steps, and configurations necessary for accurate reproduction. The dataset is structured to reflect diverse computational requirements and methodologies, ranging from simple scripts to complex, multi-language workflows, ensuring it presents the wide range of challenges researchers face in reproducing computational studies. It provides a universal benchmark by establishing a standardized dataset for objectively evaluating and comparing the effectiveness of reproducibility tools. Each experiment included in the dataset is carefully documented to ensure ease of use. We added clear instructions following a standard, so each experiment has the same kind of instructions, making it easier for researchers to run each of them with their own reproducibility tool.The utility of the dataset is demonstrated through extensive evaluations using multiple reproducibility tools.

2025

Mind the gap: The missing features of the tools to support user studies in software engineering

Autores
Costa, L; Barbosa, S; Cunha, J;

Publicação
JOURNAL OF COMPUTER LANGUAGES

Abstract
User studies are paramount for advancing research in software engineering, particularly when evaluating tools and techniques involving programmers. However, researchers face several barriers when performing them despite the existence of supporting tools. We base our study on a set of tools and researcher-reported barriers identified in prior work on user studies in software engineering. In this work, we study how existing tools and their features cope with previously identified barriers. Moreover, we propose new features for the barriers that lack support. We validated our proposal with 102 researchers, achieving statistically significant positive support for all but one feature. We study the current gap between tools and barriers, using features as the bridge. We show there is a significant lack of support for several barriers, as some have no single tool to support them.