Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Filipe Oliveira concluiu a licenciatura em Informática em 2021 e encontra-se atualmente a terminar o mestrado na Escola Superior de Tecnologia e Gestão, do Politécnico do Porto. O seu projeto final de licenciatura foi desenvolvido na área de Machine Learning (ML). Este projeto foi realizado em torno do conceito de Machine Learning Distribuído. Atualmente, é Professor Assistente Convidado na mesma instituição. Como entusiasta da investigação e apaixonado pelo fascinante campo da Inteligência Artificial, encontra verdadeira satisfação em explorar os avanços e desafios desta área em constante evolução. Ao longo destes anos, teve a oportunidade de contribuir para o conhecimento neste domínio, tendo escrito vários artigos científicos que abordam questões cruciais e soluções inovadoras em Machine Learning.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Filipe Vamonde Oliveira
  • Cargo

    Assistente de Investigação
  • Desde

    15 fevereiro 2023
002
Publicações

2025

Using Explanations to Estimate the Quality of Computer Vision Models

Autores
Oliveira, F; Carneiro, D; Pereira, J;

Publicação
HUMAN-CENTRED TECHNOLOGY MANAGEMENT FOR A SUSTAINABLE FUTURE, VOL 2, IAMOT

Abstract
Explainable AI (xAI) emerged as one of the ways of addressing the interpretability issues of the so-called black-box models. Most of the xAI artifacts proposed so far were designed, as expected, for human users. In this work, we posit that such artifacts can also be used by computer systems. Specifically, we propose a set of metrics derived from LIME explanations, that can eventually be used to ascertain the quality of each output of an underlying image classification model. We validate these metrics against quantitative human feedback, and identify 4 potentially interesting metrics for this purpose. This research is particularly useful in concept drift scenarios, in which models are deployed into production and there is no new labelled data to continuously evaluate them, becoming impossible to know the current performance of the model.

2024

Fabric Defect Detection and Localization

Autores
Oliveira, F; Carneiro, D; Ferreira, H; Guimaraes, M;

Publicação
ADVANCES IN ARTIFICIAL INTELLIGENCE IN MANUFACTURING, ESAIM 2023

Abstract
Quality inspection is crucial in the textile industry as it ensures that the final products meet the required standards. It helps detect and address defects, such as fabric flaws and stitching irregularities, enhancing customer satisfaction, and optimizing production efficiency by identifying areas of improvement, reducing waste, and minimizing rework. In the competitive textile market, it is vital for maintaining customer loyalty, brand reputation, and sustained success. Nonetheless, and despite the importance of quality inspection, it is becoming increasingly harder to hire and train people for such tedious and repetitive tasks. In this context, there is an increased interest in automated quality control techniques that can be used in the industrial domain. In this paper we describe a computer vision model for localizing and classifying different types of defects in textiles. The model developed achieved an mAP@0.5 of 0.96 on the validation dataset. While this model was trained with a publicly available dataset, we will soon use the same architecture with images collected from Jacquard looms in the context of a funded research project. This paper thus represents an initial validation of the model for the purposes of fabric defect detection.

2024

Supervised and unsupervised techniques in textile quality inspections

Autores
Ferreira, HM; Carneiro, DR; Guimaraes, MA; Oliveira, FV;

Publicação
5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023

Abstract
Quality inspection is a critical step in ensuring the quality and efficiency of textile production processes. With the increasing complexity and scale of modern textile manufacturing systems, the need for accurate and efficient quality inspection and defect detection techniques has become paramount. This paper compares supervised and unsupervised Machine Learning techniques for defect detection in the context of industrial textile production, in terms of their respective advantages and disadvantages, and their implementation and computational costs. We explore the use of an autoencoder for the detection of defects in textiles. The goal of this preliminary work is to find out if unsupervised methods can successfully train models with good performance without the need for defect labelled data. (c) 2023 The Authors. Published by Elsevier B.V.

2024

Block size, parallelism and predictive performance: finding the sweet spot in distributed learning

Autores
Oliveira, F; Carneiro, D; Guimaraes, M; Oliveira, O; Novais, P;

Publicação
INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS

Abstract
As distributed and multi-organization Machine Learning emerges, new challenges must be solved, such as diverse and low-quality data or real-time delivery. In this paper, we use a distributed learning environment to analyze the relationship between block size, parallelism, and predictor quality. Specifically, the goal is to find the optimum block size and the best heuristic to create distributed Ensembles. We evaluated three different heuristics and five block sizes on four publicly available datasets. Results show that using fewer but better base models matches or outperforms a standard Random Forest, and that 32 MB is the best block size.

2023

Dynamic Management of Distributed Machine Learning Projects

Autores
Oliveira, F; Alves, A; Moço, H; Monteiro, J; Oliveira, O; Carneiro, D; Novais, P;

Publicação
INTELLIGENT DISTRIBUTED COMPUTING XV, IDC 2022

Abstract
Given the new requirements of Machine Learning problems in the last years, especially in what concerns the volume, diversity and speed of data, new approaches are needed to deal with the associated challenges. In this paper we describe CEDEs - a distributed learning system that runs on top of an Hadoop cluster and takes advantage of blocks, replication and balancing. CEDEs trains models in a distributed manner following the principle of data locality, and is able to change parts of the model through an optimization module, thus allowing a model to evolve over time as the data changes. This paper describes its generic architecture, details the implementation of the first modules, and provides a first validation.