Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Elsa Ferreira Gomes
  • Cargo

    Investigador Sénior
  • Desde

    01 novembro 2016
Publicações

2025

Histopathological Imaging Dataset for Oral Cancer Analysis: A Study with a Data Leakage Warning

Autores
Nogueira, DM; Gomes, EF;

Publicação
Proceedings of the 18th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2025 - Volume 1, Porto, Portugal, February 20-22, 2025.

Abstract

2025

Leveraging synthetic data to develop a machine learning model for voiding flow rate prediction from audio signals

Autores
Alvarez, ML; Bahillo, A; Arjona, L; Nogueira, DM; Gomes, EF; Jorge, M;

Publicação
IEEE Access

Abstract
Sound-based uroflowmetry (SU) is a non-invasive technique emerging as an alternative to traditional uroflowmetry (UF) to calculate the voiding flow rate based on the sound generated by the urine impacting the water in a toilet, enabling remote monitoring and reducing the patient burden and clinical costs. This study trains four different machine learning (ML) models (random forest, gradient boosting, support vector machine and convolutional neural network) using both regression and classification approaches to predict and categorize the voiding flow rate from sound events. The models were trained with a dataset that contains sounds from synthetic void events generated with a high precision peristaltic pump and a traditional toilet. Sound was simultaneously recorded with three devices: Ultramic384k, Mi A1 smartphone and Oppo Smartwatch. To extract the audio features, our analysis showed that segmenting the audio signals into 1000 ms segments with frequencies up to 16 kHz provided the best results. Results show that random forest achieved the best performance in both regression and classification tasks, with a mean absolute error (MAE) of 0.9, 0.7 and 0.9 ml/s and quadratic weighted kappa (QWK) of 0.99, 1.0 and 1.0 for the three devices. To evaluate the models in a real environment and assess the effectiveness of training with synthetic data, the best-performing models were retrained and validated using a real voiding sounds datset. The results reported an MAE below 2.5 ml/s and a QWK above 0.86 for regression and classification tasks, respectively. © IEEE. 2013 IEEE.

2023

Automatic Classification of Bird Sounds: Using MFCC and Mel Spectrogram Features with Deep Learning

Autores
Carvalho, S; Gomes, EF;

Publicação
VIETNAM JOURNAL OF COMPUTER SCIENCE

Abstract
Bird species identification is a relevant and time-consuming task for ornithologists and ecologists. With growing amounts of audio-annotated data, automatic bird classification using machine learning techniques is an important trend in the scientific community. Analyzing bird behavior and population trends helps detect other organisms in the environment and is an important problem in ecology. Bird populations react quickly to environmental changes, which make their real-time counting and tracking challenging and very useful. A reliable methodology that automatically identifies bird species from audio would therefore be a valuable tool for the experts in different scientific and applicational domains. The goal of this work is to propose a methodology to identify bird sounds. In this paper, we explore deep learning techniques that are being used in this domain, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to classify the data. In deep learning, audio problems are commonly approached by converting them into images using audio feature extraction techniques such as Mel Spectrograms and Mel Frequency Cepstral Coefficients (MFCCs). We propose and test multiple deep learning and feature extraction combinations in order to find the most suitable approach to this problem.

2022

MigraR: An open-source, R-based application for analysis and quantification of cell migration parameters

Autores
Shaji, N; Nunes, F; Rocha, MI; Gomes, EF; Castro, H;

Publicação
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE

Abstract
Background and objective: Cell migration is essential for many biological phenomena with direct impact on human health and disease. One conventional approach to study cell migration involves the quantitative analysis of individual cell trajectories recorded by time-lapse video microscopy. Dedicated software tools exist to assist the automated or semi-automated tracking of cells and translate these into coordinate positions along time. However, cell biologists usually bump into the difficulty of plotting and computing these data sets into biologically meaningful figures and metrics. Methods: This report describes MigraR, an intuitive graphical user interface executed from the RStudio (TM) (via the R package Shiny), which greatly simplifies the task of translating coordinate positions of moving cells into measurable parameters of cell migration (velocity, straightness, and direction of movement), as well as of plotting cell trajectories and migration metrics. One innovative function of this interface is that it allows users to refine their data sets by setting limits based on time, velocity and straightness. Results: MigraR was tested on different data to assess its applicability. Intended users of MigraR are cell biologists with no prior knowledge of data analysis, seeking to accelerate the quantification and visualization of cell migration data sets delivered in the format of Excel files by available cell-tracking software. Conclusions: Through the graphics it provides, MigraR is an useful tool for the analysis of migration parameters and cellular trajectories. Since its source code is open, it can be subject of refinement by expert users to best suit the needs of other researchers. It is available at GitHub and can be easily reproduced.

2022

The Usage of Data Augmentation Strategies on the Detection of Murmur Waves in a PCG Signal

Autores
Torres, J; Oliveira, J; Gomes, EF;

Publicação
BIOSIGNALS: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL 4: BIOSIGNALS

Abstract
Cardiac auscultation is a key screening tool used for cardiovascular evaluation. When used properly, it speeds up treatment and thus improving the patient's life quality. However, the analysis and interpretation of the heart sound signals is subjective and dependent of the physician's experience and domain knowledge. A computer assistant decision (CAD) system that automatically analyse heart sound signals, can not only support physicians in their clinical decisions but also release human resources to other tasks. In this paper, and to the best of our knowledge, for the first time a SMOTE strategy is used to boost a Convolutional Neural Network performance on the detection of murmur waves. Using the SMOTE strategy, a CNN achieved an overall of 88.43%.

Teses
supervisionadas

2023

Deteção de patologia cardíaca utilizando aprendizagem profunda

Autor
HUGO FILIPE PADRÃO BRANDÃO ESTEVES

Instituição
IPP-ISEP

2022

Deteção de patologia cardíaca usando machine learning

Autor
JESSICA FELIZ DOS SANTOS

Instituição
IPP-ISEP

2021

Deteção de patologia em sons cardíacos usando deep learning

Autor
JOSÉ PEDRO INEZ DE MEIRA TORRES

Instituição
IPP-ISEP

2021

Deep learning para classificação automática de sons usando o Audioset

Autor
MIGUEL ÂNGELO MOREIRA ROCHA

Instituição
IPP-ISEP

2020

Identificação automática de aves a partir de áudio

Autor
SILVESTRE DANIEL DIAS CARVALHO

Instituição
IPP-ISEP