Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Factos & Números
000
Apresentação

Laboratório de Inteligência Artificial e Apoio à Decisão

O LIAAD investiga na área estratégica de Data Science, que tem verificado um crescente interesse por todo o mundo, sendo fundamental para todas as áreas da atividade humana.

As enormes quantidades de dados recolhidos (Big Data) e a generalização de dispositivos com sensores e/ou poder de processamento oferecem cada vez mais oportunidades e desafios a cientistas e engenheiros.

Além disso, a procura por modelos complexos de apoio à decisão está a generalizar-se em áreas como negócios, saúde, ciência, governo eletrónico e e-learning, o que nos encoraja a investir em diferentes abordagens.

A nossa estratégia geral é tirar proveito do fluxo e diversificação de dados e investir em linhas de investigação que ajudarão a reduzir a lacuna entre dados recolhidos e dados úteis, oferecendo diversas soluções de modelação.

No LIAAD o trabalho científico centra-se nas seguintes áreas: machine learning, estatística, otimização e matemática.

Últimas Notícias
Ciência e Engenharia dos Computadores

As variedades linguísticas com menor peso também têm espaço na era da IA – dois artigos INESC TEC em conferência de topo provam-no

É difícil conceber muitas das tecnologias ou inovações mais recentes sem o recurso a Modelos de Linguagem (ML) ou Processamento da Linguagem Natural (PLN). A sua presença e incorporação em diversas esferas da sociedade – algumas com muita relevância, como é o caso da esfera legal ou médica – tem levantado questões (e preocupações) que acabam muitas vezes a bater na mesma parede de interrogação: estarão as tecnologias baseadas em ML a abranger todas as comunidades? Recentemente, dois artigos científicos com assinatura INESC TEC – ambos aceites no AAAI, uma conferência A* – procuraram resolver alguns dos desafios que se vislumbram nesta nova era e que impactam diretamente a língua portuguesa.

28 fevereiro 2025

Ciência e Engenharia dos Computadores

Diz-me quando procuras, dir-te-ei o que precisas. Colaboração INESC TEC-Amazon otimiza resultados dos motores de busca para datas comemorativas

A sazonalidade das pesquisas nos motores de busca pode ser um fator a considerar pelo comércio online para melhorar o posicionamento dos seus resultados. Um novo artigo-demo com assinatura INESC TEC partiu da criação de uma base de dados para apresentar a solução Occasion-aware Recommender, na tradução direta para português, um recomendador sensível ao contexto da ocasião.

26 fevereiro 2025

Ciência e Engenharia dos Computadores

INESC TEC desenvolve recursos de processamento de linguagem natural para a língua portuguesa

Expandir e construir novos recursos de processamento de linguagem natural (em inglês, Natural Language Processing - NLP) para a língua portuguesa foi o grande objetivo do projeto PTicola. Os resultados deste projeto, que incluem, por exemplo, um tradutor de inglês-português europeu e um identificador de variantes PT-BR/PT-PT, permitem responder à lacuna nos recursos de NLP disponíveis para o PT-PT, comparativamente ao PT-BR.

14 fevereiro 2025

Inteligência Artificial

A maior conferência de Machine Learning da Europa acontece no Porto e está a aceitar artigos

Chama-se ECML PKDD – ou, por extenso e em inglês European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases – e é a maior conferência da Europa na área da aprendizagem automática. Em 2025 acontece no Porto, pela mão do INESC TEC, entre 15 e 19 de setembro e a submissão de artigos está aberta até março.

09 janeiro 2025

Inteligência Artificial

“De onde vimos? Para onde vamos?” – foi assim que João Gama - um dos cientistas mais citados do mundo - se despediu da sua atividade de docência

35 anos separam o início e o fim da carreira de docente de João Gama, um dos cientistas mais citados do mundo. O investigador do INESC TEC, que deu a sua última aula a 25 de novembro, despediu-se, assim, das salas de aula da Faculdade de Economia da Universidade do Porto (FEP). O mote? “De onde vimos? Para onde vamos?” – o culminar de uma carreira académica repleta de reconhecimentos, em particular, nas áreas de Inteligência Artificial (IA) e Machine Learning.

28 novembro 2024

003

Projetos Selecionados

PROD_AI

Solução IA/ML preditiva aplicada ao procurement e gestão de produção:

2025-2027

Doc2FraudDetection

Automated Detection of Fraudulent Documents

2025-2026

Easy4ALL

AI Assistant for No-Code Plataform

2024-2026

Equipa
Publicações

LIAAD Publicações

Ler todas as publicações

2025

Anomaly Detection in Pet Behavioural Data

Autores
Silva, I; Ribeiro, RP; Gama, J;

Publicação
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT II

Abstract
Pet owners are increasingly becoming conscious of their pet's necessities and are paying more attention to their overall wellness. The well-being of their pets is intricately linked to their own emotional and physical well-being. Some veterinary system solutions are emerging to provide proactive healthcare options for pets. One such solution offers the continuous monitoring of a pet's activity through accelerometer tracking devices. Based on data collected by this application, in this paper, we study different time aggregation and three unsupervised machine learning techniques to identify anomalies in pet behaviour data. Specifically, three algorithms, Isolation Forest, Local Outlier Factor, and K-Nearest Neighbour, with various thresholds to differentiate between normal and abnormal events. Results conducted on ten pets (five cats and five dogs) show that the most effective approach is to use daily data divided into periods. Moreover, the Local Outlier Factor is the best algorithm for detecting anomalies when prioritizing the identification of true positives. However, it also produces a high false positive ratio.

2025

Data Science for Fighting Environmental Crime

Autores
Barbosa, M; Ribeiro, C; Gomes, F; Ribeiro, RP; Gama, J;

Publicação
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT II

Abstract
The rise of environmental crimes has become a major concern globally as they cause significant damage to ecosystems, public health and result in economic losses. The availability of vast sensor data provides an opportunity to analyze environmental data proactively. This helps to detect irregularities and uncover potential criminal activities. This paper highlights the critical role played by machine learning (ML) and remote sensing technologies in the continuously evolving scenarios of environmental crime. By examining some case studies on detecting illegal fishing, illegal oil spills, illegal landfills, and illegal logging, we delve into the practical implementation of data-driven approaches for environmental crime detection. Our goal with this study is to provide an overview of the existing research in this area and foster the use of ML and data science techniques to enhance environmental crime detection.

2025

Parametric models for distributional data

Autores
Brito, P; Silva, APD;

Publicação
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION

Abstract
We present parametric probabilistic models for numerical distributional variables. The proposed models are based on the representation of each distribution by a location measure and inter-quantile ranges, for given quantiles, thereby characterizing the underlying empirical distributions in a flexible way. Multivariate Normal distributions are assumed for the whole set of indicators, considering alternative structures of the variance-covariance matrix. For all cases, maximum likelihood estimators of the corresponding parameters are derived. This modelling allows for hypothesis testing and multivariate parametric analysis. The proposed framework is applied to Analysis of Variance and parametric Discriminant Analysis of distributional data. A simulation study examines the performance of the proposed models in classification problems under different data conditions. Applications to Internet traffic data and Portuguese official data illustrate the relevance of the proposed approach.

2025

Forecasting with Deep Learning: Beyond Average of Average of Average Performance

Autores
Cerqueira, V; Roque, L; Soares, C;

Publicação
DISCOVERY SCIENCE, DS 2024, PT I

Abstract
Accurate evaluation of forecasting models is essential for ensuring reliable predictions. Current practices for evaluating and comparing forecasting models focus on summarising performance into a single score, using metrics such as SMAPE. We hypothesize that averaging performance over all samples dilutes relevant information about the relative performance of models. Particularly, conditions in which this relative performance is different than the overall accuracy. We address this limitation by proposing a novel framework for evaluating univariate time series forecasting models from multiple perspectives, such as one-step ahead forecasting versus multi-step ahead forecasting. We show the advantages of this framework by comparing a state-of-the-art deep learning approach with classical forecasting techniques. While classical methods (e.g. ARIMA) are long-standing approaches to forecasting, deep neural networks (e.g. NHITS) have recently shown state-of-the-art forecasting performance in benchmark datasets. We conducted extensive experiments that show NHITS generally performs best, but its superiority varies with forecasting conditions. For instance, concerning the forecasting horizon, NHITS only outperforms classical approaches for multi-step ahead forecasting. Another relevant insight is that, when dealing with anomalies, NHITS is outperformed by methods such as Theta. These findings highlight the importance of evaluating forecasts from multiple dimensions.

2025

PrivateCTGAN: Adapting GAN for Privacy-Aware Tabular Data Sharing

Autores
Lopes, F; Soares, C; Cortez, P;

Publicação
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT II

Abstract
This research addresses the challenge of generating synthetic data that resembles real-world data while preserving privacy. With privacy laws protecting sensitive information such as healthcare data, accessing sufficient training data becomes difficult, resulting in an increased difficulty in training Machine Learning models and in overall worst models. Recently, there has been an increased interest in the usage of Generative Adversarial Networks (GAN) to generate synthetic data since they enable researchers to generate more data to train their models. GANs, however, may not be suitable for privacy-sensitive data since they have no concern for the privacy of the generated data. We propose modifying the known Conditional Tabular GAN (CTGAN) model by incorporating a privacy-aware loss function, thus resulting in the Private CTGAN (PCTGAN) method. Several experiments were carried out using 10 public domain classification datasets and comparing PCTGAN with CTGAN and the state-of-the-art privacy-preserving model, the Differential Privacy CTGAN (DP-CTGAN). The results demonstrated that PCTGAN enables users to fine-tune the privacy fidelity trade-off by leveraging parameters, as well as that if desired, a higher level of privacy.

Factos & Números

29Investigadores Séniores

2016

72Investigadores

2016

14Artigos em conferências indexadas

2020