Detalhes
Nome
Diana Filipa GuimarãesCargo
Investigador AuxiliarDesde
07 novembro 2016
Nacionalidade
PortugalCentro
Fotónica AplicadaContactos
+351220402301
diana.f.guimaraes@inesctec.pt
2025
Autores
R Pereira, L; Braçais, M; Capela, D; Silva, NA; Jorge, AS; Guerner, A; Silva, SO; Frazão, O; Guimarães, D;
Publicação
EPJ Web of Conferences
Abstract
A study of an Eocene fish fossil using portable XRF revealed distinct geochemical differences between the fossil and surrounding sediment. Elements like uranium, yttrium, arsenic, and phosphorus were found only in the fossil, while calcium and iron appeared in both regions. These patterns point to selective elemental incorporation during early fossilization and diagenesis processes. The results highlight XRF's usefulness in verifying fossil authenticity, provenance and understanding the chemical processes during fossilization. © 2025 Elsevier B.V., All rights reserved.
2025
Autores
Filipa Dias; Ricardo Ribeiro; Filipe Gonçalves; Alexandre Lima; Encarnación Roda-Robles; Tânia Martins; Diana Guimarães;
Publicação
The Canadian Journal of Mineralogy and Petrology
Abstract
2025
Autores
Capela, D; Manso, M; Lopes, T; Cavaco, R; Teixeira, J; Jorge, PAS; Silva, NA; Guimaraes, D;
Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Abstract
Heritage preservation requires innovative sensing technologies to analyze their chemical composition while minimizing damage. This study introduces a Laser-induced Breakdown Spectroscopy (LIBS) system featuring a fiber laser source and optical fiber-based collection system for the analysis of heritage ceramics. Comparative experiments with a conventional Nd:YAG laser LIBS system highlight the advantages and trade-offs of the fiber laser system in terms of ablation capability, spectral mapping, and depth profiling. Results were validated against X-ray Fluorescence (XRF). Experiments demonstrate minimal surface alteration and high-quality spectral data for elements such as Pb, Fe, Zn, Sb, Mn, Ti Na, Ba and Ca. The compact design and good results position this system as a transformative tool for heritage conservation.
2025
Autores
Capela, D; Baptista, MC; Gomes, BM; Jorge, PAS; Silva, NA; Braga, MH; Guimaraes, D;
Publicação
JOURNAL OF POWER SOURCES
Abstract
Solid-state batteries are prominent in today's research landscape due to their advantages in capacity and safety. This work explores anode-less all-solid-state batteries, a configuration with industrial benefits as it avoids handling alkali metal anodes, albeit with room for improvement. To elucidate the intricacies of these batteries, Laser-Induced Breakdown Spectroscopy (LIBS) served as a pivotal analytical tool, primarily focusing on the negative current collector surface where Li+ nucleation occurs from the Li-rich electrolyte. The use of a fiber-laser for breakdown spectroscopy offers advantages over conventional lasers by producing high beam quality, enabling minimal spot size, and ensuring excellent spatial resolution. LIBS is an asset to verify Li presence, discerning its source, assessing nucleation and distinguishing it from electrolyte-derived Li. For instance, in this work utilizing Li2.99Ba0.005ClO as the electrolyte, LIBS is crucial to elucidate the relationship between Li and other elements like Cl, Zn, or Fe, shedding light on key battery performance aspects. LIBS demonstrated a high potential for verifying in situ Li metal nucleation in anode-less cells. This study highlights its effectiveness in conceptual and product development and advanced quality testing. The application of a clustering method enhanced result interpretability and the distinction between electrolyte and in situ anode regions.
2025
Autores
Cavaco, R; Lopes, T; Capela, D; Guimaraes, D; Jorge, PAS; Silva, NA;
Publicação
APPLIED SCIENCES-BASEL
Abstract
Spectral imaging is a broad term that refers to the use of a spectroscopy technique to analyze sample surfaces, collecting and representing spatially referenced signals. Depending on the technique utilized, it allows the user to reveal features and properties of objects that are invisible to the human eye, such as chemical or molecular composition. However, the interpretability and interaction with the results are often limited to screen visualization of two-dimensional representations. To surpass such limitations, augmented reality emerges as a promising technology, assisted by recent developments in the integration of spectral imaging datasets onto three-dimensional models. Building on this context, this work explores the integration of spectral imaging with augmented reality, aiming to create an immersive toolset to increase the interpretability and interactivity of the results of spectral imaging analysis. The procedure follows a two-step approach, starting from the integration of spectral maps onto a three-dimensional models, and proceeding with the development of an interactive interface to allow immersive visualization and interaction with the results. The approach and tool developed present the opportunity for a user-centric extension of reality, enabling more intuitive and comprehensive analyses with the potential to drive advancements in various research domains.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.