Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Catarina Silva Monteiro
  • Cargo

    Investigador Auxiliar
  • Desde

    01 setembro 2015
  • Nacionalidade

    Portugal
  • Centro

    Fotónica Aplicada
  • Contactos

    +351220402301
    catarina.s.monteiro@inesctec.pt
004
Publicações

2025

Enhancing a Polarimetric Fiber Sensor Using Fisher Information

Autores
Ferreira, TD; Monteiro, C; Gonçalves, C; Frazao, O; Silva, NA;

Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS

Abstract
Polarization-based fiber sensors rely on the dynamics of the Stokes vector at the output of the optical fiber to probe stimuli that induce polarization variations. However, these sensors often suffer from limitations in sensitivity, precision, and reproducibility. In this work, we address these challenges by incorporating concepts from the Mueller matrix formalism to enhance the capabilities of such sensors. Specifically, we measure the Mueller matrix in the polarization basis that describes how the polarization evolves inside the optical fiber. Leveraging this formalism, we configure the system as a precise sensor to detect deformations along the fiber. By utilizing the Fisher Information framework, we significantly improve accuracy and resolution, enabling the detection of subtle perturbations with greater precision. This study introduces a novel approach for precise polarization control and advanced fiber-based sensing applications.

2025

Harnessing Speckle Optical Fiber Sensors through High-Frequency Interrogation with an Event-Based Camera

Autores
Lopes, T; Teixeira, J; Rocha, VV; Ferreira, TD; Monteiro, CS; Jorge, PAS; Silva, NA;

Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS

Abstract
Despite their extreme sensitivity, speckle-based fiber optical sensors are typically limited by the camera frame rate and dynamic range. In this context, recent developments in event-based sensors make them a promising and affordable tool for high-speed interrogation for such class of sensors, offering a low-latency approach to detecting dynamic changes in illumination patterns, well-suited for fast interrogation with frequency response up to the MHz range. In this manuscript, we investigate the potential of using an event-based vision sensor (EVS) as an interrogator for a speckle-based optical fiber sensor operating at 532nm to detect vibrations induced by an off-the-shelf sound speaker. In contact with the fiber, these vibrations induce dynamic changes in the speckle pattern, which are tracked by the EVS and processed to construct temporal frames with timestamps below 100 mu s. Approximating the differential operator of the deformation in the linear regime, we show a successful reconstruction of the acoustic signal for two illustrative case studies: i)a single-frequency signal at 1.2 KHz and ii)a linear ramp between 300 Hz to 2.5 kHz. The results demonstrate the ability to accurately identify not only the fundamental frequencies but also their harmonics generated by the speaker up to 5 KHz, paving an innovative path to harness the potential of speckle-based sensors in multiple scenarios of optical metrology and dynamic sensing applications.

2025

Enhancing spectral imaging with multi-condition image fusion

Autores
Teixeira, J; Lopes, T; Capela, D; Monteiro, CS; Guimaraes, D; Lima, A; Jorge, PAS; Silva, NA;

Publicação
SCIENTIFIC REPORTS

Abstract
Spectral Imaging techniques such as Laser-induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy (RS) enable the localized acquisition of spectral data, providing insights into the presence, quantity, and spatial distribution of chemical elements or molecules within a sample. This significantly expands the accessible information compared to conventional imaging approaches such as machine vision. However, despite its potential, spectral imaging also faces specific challenges depending on the limitations of the spectroscopy technique used, such as signal saturation, matrix interferences, fluorescence, or background emission. To address these challenges, this work explores the potential of using techniques from conventional RGB imaging to enhance the dynamic range of spectral imaging. Drawing inspiration from multi-exposure fusion techniques, we propose an algorithm that calculates a global weight map using exposure and contrast metrics. This map is then used to merge datasets acquired with the same technique under distinct acquisition conditions. With case studies focused on LIBS and Raman Imaging, we demonstrate the potential of our approach to enhance the quality of spectral data, mitigating the impact of the aforementioned limitations. Results show a consistent improvement in overall contrast and peak signal-to-noise ratios of the merged images compared to single-condition images. Additionally, from the application perspective, we also discuss the impact of our approach on sample classification problems. The results indicate that LIBS-based classification of Li-bearing minerals (with Raman serving as the ground truth), is significantly improved when using merged images, reinforcing the advantages of the proposed solution for practical applications.

2025

Improving LIBS-based mineral identification with Raman imaging and spectral knowledge distillation

Autores
Lopes, T; Cavaco, R; Capela, D; Dias, F; Teixeira, J; Monteiro, CS; Lima, A; Guimaraes, D; Jorge, PAS; Silva, NA;

Publicação
TALANTA

Abstract
Combining data from different sensing modalities has been a promising research topic for building better and more reliable data-driven models. In particular, it is known that multimodal spectral imaging can improve the analytical capabilities of standalone spectroscopy techniques through fusion, hyphenation, or knowledge distillation techniques. In this manuscript, we focus on the latter, exploring how one can increase the performance of a Laser-induced Breakdown Spectroscopy system for mineral classification problems using additional spectral imaging techniques. Specifically, focusing on a scenario where Raman spectroscopy delivers accurate mineral classification performance, we show how to deploy a knowledge distillation pipeline where Raman spectroscopy may act as an autonomous supervisor for LIBS. For a case study concerning a challenging Li-bearing mineral identification of spodumene and petalite, our results demonstrate the advantages of this method in improving the performance of a single-technique system. LIBS trained with labels obtained by Raman presents an enhanced classification performance. Furthermore, leveraging the interpretability of the model deployed, the workflow opens opportunities for the deployment of assisted feature discovery pipelines, which may impact future academic and industrial applications.

2024

DAS System for the Evaluation of Subsea Seismic Data from GEOLAB cable in Madeira Island

Autores
Cunha, C; Monteiro, C; Martins, H; Carrilho, F; Silva, S; Frazão, O;

Publicação

Abstract
DAS technology has emerged as a transformative technology with a vast range of applications, both on land and at sea. These applications span from oil and gas exploration to geophysical data collection, infrastructure monitoring, security, and environmental hazard monitoring, including earthquake and tsunami early warning systems (Landrø et al., 2022; Gorshkov et al., 2022). The unique properties of DAS systems can bring high benefits to the demanding field of seismology, as it provides a significant increment in the spatial information that can be obtained from a seismic event. Moreover, the widespread deployment of optical fiber across the Earth's surface, coupled with the relatively low cost per monitoring point for extended distances, has rendered DAS an appealing alternative to traditional seismographs (Li et al., 2023). This is especially true for subsea applications, where the capability of remote sensing is particularly attractive. Remote sensing enables the placement of systems far from harsh environments, often difficult to access, enhancing the feasibility and effectiveness of monitoring efforts. In this work, it was employed a DAS equipment on a dark telecommunication fiber was installed exclusively for research purposes, named GEOLAB, located on the island of Madeira. This fiber spans approximately 50 km, where the initial tests were conducted using a DAS from January 31 to February 14, 2023. The equipment utilized is the HDAS provided by the IO-CSIC. The signal of the fiber was collected with a spatial resolution (or gauge length) of 10 m, resulting in total of 5000 channels, with a temporal acquisition with a frequency of 50 Hz. The DAS system has a chirped pulsed laser as the optical source, generating pulses with a width of 100 ns. These pulses were then amplified using a semiconductor optical amplifier to mitigate intra-band coherent noise. A total of 19 seismic events were detected, and then characterized by performing two-dimensional linear bandpass filtering. We will present the initial findings, particularly the seismic activity resulting from the earthquakes with epicenters near the city of Gaziantep, located in Turkey. These events occurred on February 6, 2023, with magnitudes of 7.5 and 7.8 on the Richter scale.