Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Marcos Martins

2024

Exploring local chlorine generation through seawater electrolysis to Extend optical sensor lifespan in marine environments

Authors
Matos, T; Pinto, VC; Sousa, PJ; Martins, MS; Fernández, E; Goncalves, LM;

Publication
CHEMICAL ENGINEERING JOURNAL

Abstract
Biofouling in marine optical sensors poses a significant challenge as it can compromise data accuracy and instrument functionality. This study investigates the effectiveness of local chlorine generation by seawater electrolysis in mitigating biological fouling and extending the operational lifespan of optical oceanographic instruments. Eight similar turbidity probes integrated with a local chlorine generation system, along with a turbidity probe constructed from ABS and another from PLA with copper filament, were developed for testing in the marine environment. The chlorine probes were designed into two groups: four utilizing standard FTO glass and four featuring FTO glass coated with platinum nanoparticles. Each set of probes employed different excitation currents for chlorine generation. All probes underwent laboratory calibration using formazine before deployment in a coastal environment for 97 days. The findings demonstrate a correlation with higher electrical power leading to prolonged operation intervals free from biofouling interference. Additionally, probes coated with platinum nanoparticles demonstrate higher performance in comparison to those with standard FTO glass. The copper probe did not effectively shield the optical transducers from microfouling, although it effectively demonstrated its efficacy in protecting the structural housing of the device. Overall, this work offers a compelling in situ demonstration of local chlorine generation as a promising strategy for enhancing the performance and longevity of optical oceanographic instruments in marine environments.

2024

A review of methods and instruments to monitor turbidity and suspended sediment concentration

Authors
Matos, T; Martins, MS; Henriques, R; Goncalves, LM;

Publication
JOURNAL OF WATER PROCESS ENGINEERING

Abstract
Turbidity and suspended sediment concentration are crucial parameters indicative of water quality, playing pivotal roles in evaluating the well-being of aquatic ecosystems and the effectiveness of water treatment processes. This manuscript provides an in-depth review of various methods and instruments in use for in situ and inline applications. The exploration of optical instrumentation is central to this review, examining its widespread use and current challenges within standard methods, commercial instruments and scientific research. The study also delves into alternative techniques, such as acoustic and capacitive methods, elucidating their applications, calibration intricacies, and practical considerations. Furthermore, the paper scrutinizes the emerging importance of satellite and aerial imaging processing as a supplementary tool for turbidity monitoring, underscoring its potential to offer comprehensive insights on a larger scale. The review emphasizes the key accomplishments and challenges of the state-of-the-art technologies, providing a comprehensive overview of the current stage of the field and its prospects. and aims to provide valuable insights for researchers, practitioners, and decision-makers involved in environmental monitoring and water facility management, enabling a deeper comprehension of the significance of turbidity and suspended sediment concentration in safeguarding water quality and ecosystem health.

2016

Underwater acoustic physical layer emulator to evaluate digital communication

Authors
Martins, Marcos Silva; Cabral, José; Lopes, Gil; Ribeiro, A. Fernando;

Publication

Abstract
In order to achieve underwater acoustic high data-rate and real time communications, it is essential to implement a system that operates both at high and wideband frequencies using digital modulations. Therefore, to reduce the time and cost of developing acoustic communications an emulator of a physical layer model was implemented, allowing to test in real time the performance of digital modulations. The model was composed of an emitter transducer, a hydrophone and the subaquatic medium and was integrated in a Field Programmable Gate Array (FPGA) in order to emulate the physical layer in the acoustic modem testing. The emitter transducer and the hydrophone models were designed to meet real prototype characteristics. The system prototype was implemented in order to compare the experimental trials results with those obtained in emulator, emulating the transmission of acoustic signals, using different types of digital modulations. The system was tested using Binary Phase-Shift Keying (BPSK), Binary Frequency Shift keying (BFSK) and Binary Amplitude Shift Keying (BASK) modulations with a 1 MHz carrier frequency resulting in a data rate of 125 kbps. It was verified that the implemented model represents a suitable approximation to the real subaquatic communication channel, allowing the evaluation of digital acoustic communications.

2024

A Demonstrator for Future Fiber-Optic Active SMART Repeaters

Authors
Cruz, NA; Silva, A; Zabel, F; Ferreira, B; Jesus, SM; Martins, MS; Pereira, E; Matos, T; Viegas, R; Rocha, J; Faria, J;

Publication
OCEANS 2024 - SINGAPORE

Abstract
The deep-sea environment still presents many challenges for systematic, comprehensive data acquisition. The current generation of SMART cables incorporates low-power sensors in long-range telecommunication cables to improve knowledge of ocean variables, aid in earthquake and tsunami warnings, and enhance coastal protection. The K2D Project seeks to expand SMART cables' capabilities by increasing the diversity of sensors along deep water cables, integrating active devices, and leveraging mobile platforms like deep-water AUVs, thereby improving spatial coverage and advancing ocean monitoring technology. This paper discusses a demonstration of these capabilities, focusing on the description of the main building blocks developed along the project, with results from a sea deployment in September 2023.

2024

Design of a sensor to estimate suspended sediment transport in situ using the measurements of water velocity, suspended sediment concentration and depth

Authors
Matos, T; Martins, MS; Henriques, R; Goncalves, LM;

Publication
JOURNAL OF ENVIRONMENTAL MANAGEMENT

Abstract
The sediment transport plays a major role in every aquatic ecosystem. However, the lack of instruments to monitor this process has been an obstacle to understanding its effects. We present the design of a single sensor built to measure water velocity, suspended sediment concentration and depth in situ, and how to associate the three variables to estimate and analyse sediment transport. During the laboratory calibrations, the developed instrument presented a resolution from 0.001 g/L to 0.1 g/L in the 0-12 g/L range for the measurement of suspended sediment concentration and 0.05 m/s resolution for 0-0.5 m/s range and 0.001 m/s resolution for 0.5-1 m/s range for the measurement of water velocity. The device was deployed for 6 days in an estuarine area with high sediment dynamics to evaluate its performance. During the field experiment, the sensor successfully measured the tidal cycles and consequent change of flow directions, and the suspended sediment concentration in the area. These measurements allowed to estimate water discharge and sediment transport rates during the different phases of tides, and the daily total volume of water and total amount of sediment passing through the estuary.

2016

Tracking sound source localization for a home robot application

Authors
Lopes, Gil; Albernaz, Andreia; Ribeiro, Hélder Ricardo Freitas; Ribeiro, A. Fernando; Martins, Marcos Silva;

Publication

Abstract
The future of robotics is now trending for home servicing. Nursing homes and assistance to elder peopleare areas where robots can provide valuable help in order to improve the quality of life of those who need it most. Calling a robot,for a person of age,can be a daunting task if the voice is failing and any resort to battery operated devices failsto comply. Using a simple mechanical apparatus,such as aClick trainerfordogs, a person can call a robot by pressing thebutton of a powerless device. The high pitch sound produced by this device can be captured and tracked down in order to estimate the person’s location within a room. This paper describes a method that provides good accuracy and uses simple and low cost technology,in order to provide an efficient positional value for an assistance robot to attend its caller. The robot does not need to search for the person in aroom as it can directly travel towards the Click’s sound source.

  • 4
  • 11