Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Miguel Romariz

2025

Assisted Vascular Analysis (AVA) for Deep Inferior Epigastric Perforators: Pipeline Analysis

Authors
Ferreira, R; Silva, J; Romariz, M; Pinto, D; Araújo, RJ; Santinha, J; Gouveia, P; Oliveira, HP;

Publication
2025 IEEE 25th International Conference on Bioinformatics and Bioengineering (BIBE)

Abstract

2025

BreLoAI - A Scalable Web Application for Breast Cancer Locoregional Treatment Approaches

Authors
Romariz, MM; Gonçalves, TF; Bonci, E; Oliveira, H; Mavioso, C; Cardoso, MJ; Cardoso, J;

Publication
Cureus Journal of Computer Science

Abstract

2025

Integrating Automated Perforator Analysis for Breast Reconstruction in Medical Imaging Workflow

Authors
Frias, J; Romariz, M; Ferreira, R; Pereira, T; Oliveira, HP; Santinha, J; Pinto, D; Gouveia, P; Silva, LB; Costa, C;

Publication
UNIVERSAL ACCESS IN HUMAN-COMPUTER INTERACTION, UAHCI 2025, PT I

Abstract
Deep Inferior Epigastric Perforator (DIEP) flap breast reconstruction relies on the precise identification of perforator vessels supplying blood to transferred tissue. Traditional manual mapping from preoperative imaging is timeconsuming and subjective. To address this, AVA, a semi-automated perforator detection algorithm, was developed to analyze angiography images. AVA follows a three-step process: automated anatomical segmentation, manual annotation of perforators, and segmentation of perforator courses. This approach enhances accuracy, reduces subjectivity, and accelerates the mapping process while generating quantitative reports for surgical planning. To streamline integration into clinical workflows, AVA has been embedded into PACScenter, a medical imaging platform, leveraging DICOM encapsulation for seamless data exchange within a Vendor Neutral Archive (VNA). This integration allows surgeons to interactively annotate perforators, adjust parameters iteratively, and visualize detailed anatomical structures. AVA-PACScenter integration eliminates workflow disruptions by providing real-time perforator analysis within the surgical environment, ultimately improving preoperative planning and intraoperative guidance. Currently undergoing clinical feasibility testing, this integration aims to enhance DIEP flap reconstruction efficiency by reducing manual inputs, improving mapping precision, and facilitating long-term report storage within Dicoogle. By automating perforator analysis, AVA represents a significant advancement toward data-driven, patient-centered surgical planning.

2024

The CINDERELLA APProach: Future Concepts for Patient Empowerment in Breast Cancer Treatment with Artificial Intelligence-Driven Healthcare Platform

Authors
Schinköthe, T; Bonci, EA; Orit, KP; Cruz, H; Di Micco, R; Gentilini, O; Heil, J; Kabata, P; Romariz, M; Gonçalves, T; Martins, H; Ludovica, B; Mika, M; Pfob, A; Romem, N; Silva, G; Bobowicz, M; Cardoso, MJ;

Publication
EUROPEAN JOURNAL OF CANCER

Abstract

2024

CINDERELLA clinical trial: Using artificial intelligence-driven healthcare to enhance breast cancer locoregional treatment decisions

Authors
Bonci, EA; Kaidar Person, O; Antunes, M; Ciani, O; Cruz, H; Di Micco, R; Gentilini, OD; Heil, J; Kabata, P; Romariz, M; Gonçalves, T; Martins, H; Borsoi, L; Mika, M; Pfob, A; Romem, N; Schinkoethe, T; Silva, G; Bobowicz, M; Cardoso, MJ;

Publication
JOURNAL OF CLINICAL ONCOLOGY

Abstract
TPS621 Background: Breast cancer treatments often pose challenges in balancing efficacy with quality of life. The CINDERELLA Project pioneers an artificial intelligence (AI)-driven approach (CINDERELLA APP) for shared decision-making process, aiming to harmonise locoregional therapeutic interventions with breast cancer patients' expectations about aesthetic outcomes. The CINDERELLA clinical trial aims to establish a new standard in patient-centred care by bridging the gap between clinical treatment options and patient expectations through innovative technology. The trial focuses on evaluating the effectiveness of the CINDERELLA APP in improving patient satisfaction regarding locoregional treatment aesthetic outcomes, aligning patient expectations with real-world results, and assessing its impact on overall quality of life and psychological well-being. Methods: Trial design and statistical methods: This international multicentric interventional randomised controlled open-label clinical trial will recruit and randomise patients into two groups: one receiving standard treatment information and the other using the AI-powered CINDERELLA APP. The primary objective is to assess the levels of agreement among patients' expectations regarding the aesthetic outcome before and 12 months after locoregional treatment. The trial will also evaluate the aesthetic outcome level of agreement between the AI evaluation tool and self-evaluation. The impact of the intervention on aligning expectations with outcomes will be evaluated using the Wilcoxon signed-rank test. The improvement in classification of aesthetic results post-intervention will be measured by calculating the Weighted Cohen's kappa. Outcomes across different groups will be compared using statistical tests and bootstrap methods. CANKADO functions as the base system, allowing doctors to supervise APP content for patients and handle data gathering, while upholding principles of privacy, data security, and ethical AI practices. Intervention planned: Using the CINDERELLA APP, the patient will have access to supervised medical information approved by breast cancer experts, and the AI system will match patient's information to pictures showing the potential aesthetic outcome (spectrum of good-poor) according to different locoregional approach. Major eligibility criteria: Non-metastatic breast cancer patients eligible for either breast-conserving surgery or mastectomy with immediate reconstruction. Current enrollment: Recruitment is currently open at six study sites. The recruitment started on 8 August 2023, aiming to enroll at least 515 patients/arm. As of January 26, 2024, clinical study sites have successfully randomised 177 patients. Clinical trial information: NCT05196269 .

2024

108TiP CINDERELLA clinical trial: Using artificial intelligence-driven healthcare to enhance breast cancer locoregional treatment decisions

Authors
A. Pfob; E-A. Bonci; O. Kaidar-Person; M. Antunes; O. Ciani; H. Cruz; R. Di Micco; O.D. Gentilini; J. Heil; P. Kabata; M. Romariz; T. Gonçalves; H.G. Martins; L. Borsoi; M. Mika; N. Romem; T. Schinköthe; G. Silva; M. Bobowicz; M.J. Cardoso;

Publication
ESMO Open

Abstract

  • 1
  • 2