2026
Authors
Dintén, R; Zorrilla, M; Veloso, B; Gama, J;
Publication
INFORMATION FUSION
Abstract
One of the key aspects of Industry 4.0 is using intelligent systems to optimize manufacturing processes by improving productivity and reducing costs. These systems have greatly impacted in different areas, such as demand prediction and quality assessment. However, the prognostics and health management of industrial equipment is one of the areas with greater potential. This paper presents a comparative analysis of deep learning architectures applied to the prediction of the remaining useful life (RUL) on public real industrial datasets. The analysis includes some of the most commonly employed recurrent neural network variations and a novel approach based on a hybrid architecture using transformers. Moreover, we apply explainability techniques to provide comprehensive insights into the model's decision-making process. The contributions of the work are: (1) a novel transformer-based architecture for RUL prediction that outperforms traditional recurrent neural networks; (2) a detailed description of the design strategies used to construct the models on two under-explored datasets; (3) the use of explainability techniques to understand the feature importance and to explain the model's prediction and (4) making models built for reproducibility available to other researchers.
2025
Authors
Santos, J; Silva, N; Ferreira, C; Gama, J;
Publication
Discovery Science - 28th International Conference, DS 2025, Ljubljana, Slovenia, September 23-25, 2025, Proceedings
Abstract
Hierarchical document classification is essential for structuring large-scale textual corpora in domains such as digital libraries and academic repositories. While recent advances in large language models (LLMs) have opened new possibilities for text classification, their applicability to hierarchical settings under real-world constraints remains underexplored. This study investigates both generative and discriminative transformer-based models, evaluating their effectiveness across multiple inference strategies: zero-shot baseline, local fine-tuning, and a global approach using category-specific models. Experiments on two real-world hierarchical datasets provide a comprehensive comparison of classification accuracy, F1-macro scores, and inference times. The results highlight that, although generative LLMs can deliver competitive (yet variable) performance at higher levels of the hierarchy, their high inference costs hinder their use in time-sensitive applications. In contrast, fine-tuned discriminative models—particularly BERT-based architectures—consistently offer a more favorable trade-off between performance and efficiency. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Neto, R; Alencar, B; Gomes, HM; Bifet, A; Gama, J; Cassales, G; Rios, R;
Publication
DATA MINING AND KNOWLEDGE DISCOVERY
Abstract
Traditional machine learning techniques assume that data is drawn from a stationary source. This assumption is challenged in contexts with data streams for presenting constant and potentially infinite sequences whose distribution is prone to change over time. Based on these settings, detecting changes (a.k.a. concept drifts) is necessary to keep learning models up-to-date. Although state-of-the-art detection methods were designed to monitor the loss of predictive models, such monitoring falls short in many real-world scenarios where the true labels are not readily available. Therefore, there is increasing attention to unsupervised concept drift detection methods as approached in this paper. In this work, we present an unsupervised and interpretable method based on Radial Basis Function Networks (RBFN) and Markov Chains (MC), referred to as RMIDDM (Radial Markov Interpretable Drift Detection Method). In our method, RBF performs, in the intermediate layer, an activation process that implicitly produces groups of observations collected over time. Simultaneously, MC models the transitions between groups to support the detection of concept drifts, which happens when the active group changes and its probability exceeds a given threshold. A set of experiments with synthetic datasets and comparisons with state-of-the-art algorithms demonstrated that the proposed method can detect drifts at runtime in an efficient, interpretable, and independent way of labels, presenting competitive results and behavior. Additionally, to show its applicability in a real-world scenario, we analyzed new COVID-19 cases, deaths, and vaccinations to identify new waves as concept drifts and generate Markov models that allow understanding of their interaction.
2026
Authors
Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (9)
Abstract
2026
Authors
Pfahringer, B; Japkowicz, N; Larrañaga, P; Ribeiro, RP; Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (8)
Abstract
2026
Authors
Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Pasquali, A; Moniz, N; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (10)
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.