2022
Authors
Neto, PC; Boutros, F; Pinto, JR; Damer, N; Sequeira, AF; Cardoso, JS; Bengherabi, M; Bousnat, A; Boucheta, S; Hebbadj, N; Erakin, ME; Demir, U; Ekenel, HK; Vidal, PBD; Menotti, D;
Publication
2022 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB)
Abstract
This work summarizes the IJCB Occluded Face Recognition Competition 2022 (IJCB-OCFR-2022) embraced by the 2022 International Joint Conference on Biometrics (IJCB 2022). OCFR-2022 attracted a total of 3 participating teams, from academia. Eventually, six valid submissions were submitted and then evaluated by the organizers. The competition was held to address the challenge of face recognition in the presence of severe face occlusions. The participants were free to use any training data and the testing data was built by the organisers by synthetically occluding parts of the face images using a well-known dataset. The submitted solutions presented innovations and performed very competitively with the considered baseline. A major output of this competition is a challenging, realistic, and diverse, and publicly available occluded face recognition benchmark with well defined evaluation protocols.
2023
Authors
Neto, PC; Sequeira, AF; Cardoso, JS; Terhörst, P;
Publication
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Workshops, Vancouver, BC, Canada, June 17-24, 2023
Abstract
In the context of biometrics, matching confidence refers to the confidence that a given matching decision is correct. Since many biometric systems operate in critical decision-making processes, such as in forensics investigations, accurately and reliably stating the matching confidence becomes of high importance. Previous works on biometric confidence estimation can well differentiate between high and low confidence, but lack interpretability. Therefore, they do not provide accurate probabilistic estimates of the correctness of a decision. In this work, we propose a probabilistic interpretable comparison (PIC) score that accurately reflects the probability that the score originates from samples of the same identity. We prove that the proposed approach provides optimal matching confidence. Contrary to other approaches, it can also optimally combine multiple samples in a joint PIC score which further increases the recognition and confidence estimation performance. In the experiments, the proposed PIC approach is compared against all biometric confidence estimation methods available on four publicly available databases and five state-of-the-art face recognition systems. The results demonstrate that PIC has a significantly more accurate probabilistic interpretation than similar approaches and is highly effective for multi-biometric recognition. The code is publicly-available1. © 2023 IEEE.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.