2012
Authors
Lucas, A; Costa Neto, RC; Silva, CA;
Publication
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Abstract
Hydrogen and electric vehicle technologies are being considered as possible solutions to mitigate environmental burdens and fossil fuel dependency. Life cycle analysis (LCA) of energy use and emissions has been used with alternative vehicle technologies to assess the Well-to-Wheel (WTW) fuel cycle or the Cradle-to-Grave (CTG) cycle of a vehicle's materials. Fuel infrastructures, however, have thus far been neglected. This study presents an approach to evaluate energy use and CO2 emissions associated with the construction, maintenance and decommissioning of energy supply infrastructures using the Portuguese transportation system as a case study. Five light-duty vehicle technologies are considered: conventional gasoline and diesel (ICE), pure electric (EV), fuel cell hybrid (FCHEV) and fuel cell plug-in hybrid (FC-PHEV). With regard to hydrogen supply, two pathways are analysed: centralised steam methane reforming (SMR) and on-site electrolysis conversion. Fast, normal and home options are considered for electric chargers. We conclude that energy supply infrastructures for FC vehicles are the most intensive with 0.03-0.53 MJ(eq)/MJ emitting 0.7-27.3 g CO2eq/MJ of final fuel. While fossil fuel infrastructures may be considered negligible (presenting values below 2.5%), alternative technologies are not negligible when their overall LCA contribution is considered. EV and FCHEV using electrolysis report the highest infrastructure impact from emissions with approximately 8.4% and 8.3%, respectively. Overall contributions including uncertainty do not go beyond 12%. Copyright
2013
Authors
Lucas, A; Chang, S;
Publication
Smart Grid and Renewable Energy
Abstract
2015
Authors
Lucas A.; Bonavitacola F.; Kotsakis E.; Fulli G.;
Publication
Electric Power Systems Research
Abstract
Fast charging is perceived by users as a preferred method for extending the average daily mobility of electric vehicles (EV). The rated power of fast chargers, their expected operation during peak hours, and clustering in designated stations, raise significant concerns. On one hand it raises concerns about standard requirements for power quality, especially harmonic distortion due to the use of power electronics connecting to high loads, typically ranging from 18 to 24 kW h. On the other hand, infrastructure dimensioning and design limitations for those investing in such facilities need to be considered. Four sets of measurements were performed during the complete charging cycle of an EV, and individual harmonic's amplitude and phase angles behaviour were analysed. In addition, the voltage and current total harmonic distortion (THD) and Total Demand Distortion (TDD) were calculated and the results compared with the IEEE519, IEC 61000/EN50160 standards. Additionally, two vehicles being fast charged while connected to the same feeder were simulated and an analysis was carried out on how the harmonic phase angles would relate. The study concluded that the use of TDD was a better indicator than THD, since the former uses the maximum current (IL) and the latter uses the fundamental current, sometimes misleading conclusions, hence it is suggested it should be included in IEC/EN standard updates. Voltage THD and TDD for the charger analysed, were within the standard's limits of 1.2% and 12% respectively, however individual harmonics (11th and 13th) failed to comply with the 5.5% limit in IEEE 519 (5% and 3% respectively in IEC61000). Phase angles tended to have preferential range differences from the fundamental wave. It was found that the average difference between the same harmonic order phase angles was lower than 90°, meaning that when more than one vehicle is connected to the same feeder the amplitudes will add. Since the limits are dependable on the upstream short circuit current (ISC), if the number of vehicles increases (i.e. IL), the standard limits will decrease and eventually be exceeded. The harmonic limitation is hence the primary binding condition, certainly before the power limitation. The initial limit to the number of chargers is not the power capacity of the upstream power circuit but the harmonic limits for electricity pollution.
2016
Authors
Lucas A.; Chondrogiannis S.;
Publication
International Journal of Electrical Power and Energy Systems
Abstract
Grid connected energy storage systems are regarded as promising solutions for providing ancillary services to electricity networks and to play an important role in the development of smart grids. Thus far, the more mature battery technologies have been installed in pilot projects and studies have indicated their main advantages and shortcomings. The main concerns for wide adoption are the overall cost, the limited number of charging cycles (or lifetime), the depth of discharge, the low energy density and the sustainability of materials used. Vanadium Redox Flow Batteries (VRFB) are a promising option to mitigate many of these shortcomings, and demonstration projects using this technology are being implemented both in Europe and in the USA. This study presents a model using MATLAB/Simulink, to demonstrate how a VRFB based storage device can provide multi-ancillary services, focusing on frequency regulation and peak-shaving functions. The study presents a storage system at a medium voltage substation and considers a small grid load profile, originating from a residential neighbourhood and fast charging stations demand. The model also includes an inverter controller that provides a net power output from the battery system, in order to offer both services simultaneously. Simulation results show that the VRFB storage device can regulate frequency effectively due to its fast response time, while still performing peak-shaving services. VRFB potential in grid connected systems is discussed to increase awareness of decision makers, while identifying the main challenges for wider implementation of storage systems, particularly related to market structure and standardisation requirements.
2018
Authors
Kotsakis E.; Lucas A.; Andreadou N.; Fulli G.; Masera M.;
Publication
2018 110th AEIT International Annual Conference, AEIT 2018
Abstract
This paper presents recent research conducted at the JRC Smart Grid Interoperability Lab and analyses key parameters that should be taken into consideration for the development of interoperable and sustainable electricity systems. Increasing energy efficiency aims at reducing the overall energy consumption and consequently lower the stress on the environment by using less energy. The first research activity illustrated is on the use of Advanced Metering Infrastructure as a gateway to improve Demand Response/Demand Side Management. The second one focuses on the use of photovoltaic in a low voltage distribution network and studies the effect of penetration in voltage unbalances. The last one addresses the power quality performance of electric vehicle chargers under low temperature conditions and provides hints for improvements. The paper underlines several factors that could affect the efficiency of systems towards making improvements that increase the stability of the relevant operations.
2018
Authors
Lucas A.; Trentadue G.; Scholz H.; Otura M.;
Publication
Energies
Abstract
Exposing electric vehicles (EV) to extreme temperatures limits its performance and charging. For the foreseen adoption of EVs, it is not only important to study the technology behind it, but also the environment it will be inserted into. In Europe, temperatures ranging from -30°C to +40°C are frequently observed and the impacts on batteries are well-known. However, the impact on the grid due to the performance of fast-chargers, under such conditions, also requires analysis, as it impacts both on the infrastructure's dimensioning and design. In this study, six different fast-chargers were analysed while charging a full battery EV, under four temperature levels (-25 °C, -15 °C, +20 °C, and +40 °C). The current total harmonic distortion, power factor, standby power, and unbalance were registered. Results show that the current total harmonic distortion (THDI) tended to increase at lower temperatures. The standby consumption showed no trend, with results ranging from 210 VA to 1650 VA. Three out of six chargers lost interoperability at -25 °C. Such non-linear loads, present high harmonic distortion, and, hence, low power factor. The temperature at which the vehicle's battery charges is crucial to the current it withdraws, thereby, influencing the charger's performance.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.