Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Francisco Carvalho Silva

2022

Multiple instance learning for lung pathophysiological findings detection using CT scans

Authors
Frade, J; Pereira, T; Morgado, J; Silva, F; Freitas, C; Mendes, J; Negrao, E; de Lima, BF; da Silva, MC; Madureira, AJ; Ramos, I; Costa, JL; Hespanhol, V; Cunha, A; Oliveira, HP;

Publication
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING

Abstract
Lung diseases affect the lives of billions of people worldwide, and 4 million people, each year, die prematurely due to this condition. These pathologies are characterized by specific imagiological findings in CT scans. The traditional Computer-Aided Diagnosis (CAD) approaches have been showing promising results to help clinicians; however, CADs normally consider a small part of the medical image for analysis, excluding possible relevant information for clinical evaluation. Multiple Instance Learning (MIL) approach takes into consideration different small pieces that are relevant for the final classification and creates a comprehensive analysis of pathophysiological changes. This study uses MIL-based approaches to identify the presence of lung pathophysiological findings in CT scans for the characterization of lung disease development. This work was focus on the detection of the following: Fibrosis, Emphysema, Satellite Nodules in Primary Lesion Lobe, Nodules in Contralateral Lung and Ground Glass, being Fibrosis and Emphysema the ones with more outstanding results, reaching an Area Under the Curve (AUC) of 0.89 and 0.72, respectively. Additionally, the MIL-based approach was used for EGFR mutation status prediction - the most relevant oncogene on lung cancer, with an AUC of 0.69. The results showed that this comprehensive approach can be a useful tool for lung pathophysiological characterization.

2025

MYCN-Amplified Neuroblastoma Detection Radiomics Vs. Trainable Features

Authors
Malafaia, M; Silva, F; Carvalho, DC; Martins, R; Dias, SC; Torrão, H; Oliveira, HP; Pereira, T;

Publication
2025 IEEE 25th International Conference on Bioinformatics and Bioengineering (BIBE)

Abstract

2025

Causal representation learning through higher-level information extraction

Authors
Silva, F; Oliveira, HP; Pereira, T;

Publication
ACM COMPUTING SURVEYS

Abstract
The large gap between the generalization level of state-of-the-art machine learning and human learning systems calls for the development of artificial intelligence (AI) models that are truly inspired by human cognition. In tasks related to image analysis, searching for pixel-level regularities has reached a power of information extraction still far from what humans capture with image-based observations. This leads to poor generalization when even small shifts occur at the level of the observations. We explore a perspective on this problem that is directed to learning the generative process with causality-related foundations, using models capable of combining symbolic manipulation, probabilistic reasoning, and pattern recognition abilities. We briefly review and explore connections of research from machine learning, cognitive science, and related fields of human behavior to support our perspective for the direction to more robust and human-like artificial learning systems.

2024

A review of machine learning methods for cancer characterization from microbiome data

Authors
Teixeira, M; Silva, F; Ferreira, RM; Pereira, T; Figueiredo, C; Oliveira, HP;

Publication
NPJ PRECISION ONCOLOGY

Abstract
Recent studies have shown that the microbiome can impact cancer development, progression, and response to therapies suggesting microbiome-based approaches for cancer characterization. As cancer-related signatures are complex and implicate many taxa, their discovery often requires Machine Learning approaches. This review discusses Machine Learning methods for cancer characterization from microbiome data. It focuses on the implications of choices undertaken during sample collection, feature selection and pre-processing. It also discusses ML model selection, guiding how to choose an ML model, and model validation. Finally, it enumerates current limitations and how these may be surpassed. Proposed methods, often based on Random Forests, show promising results, however insufficient for widespread clinical usage. Studies often report conflicting results mainly due to ML models with poor generalizability. We expect that evaluating models with expanded, hold-out datasets, removing technical artifacts, exploring representations of the microbiome other than taxonomical profiles, leveraging advances in deep learning, and developing ML models better adapted to the characteristics of microbiome data will improve the performance and generalizability of models and enable their usage in the clinic.

2024

Radiological Medical Imaging Annotation and Visualization Tool

Authors
Teiga, I; Sousa, JV; Silva, F; Pereira, T; Oliveira, HP;

Publication
UNIVERSAL ACCESS IN HUMAN-COMPUTER INTERACTION, PT III, UAHCI 2024

Abstract
Significant medical image visualization and annotation tools, tailored for clinical users, play a crucial role in disease diagnosis and treatment. Developing algorithms for annotation assistance, particularly machine learning (ML)-based ones, can be intricate, emphasizing the need for a user-friendly graphical interface for developers. Many software tools are available to meet these requirements, but there is still room for improvement, making the research for new tools highly compelling. The envisioned tool focuses on navigating sequences of DICOM images from diverse modalities, including Magnetic Resonance Imaging (MRI), Computed Tomography (CT) scans, Ultrasound (US), and X-rays. Specific requirements involve implementing manual annotation features such as freehand drawing, copying, pasting, and modifying annotations. A scripting plugin interface is essential for running Artificial Intelligence (AI)-based models and adjusting results. Additionally, adaptable surveys complement graphical annotations with textual notes, enhancing information provision. The user evaluation results pinpointed areas for improvement, including incorporating some useful functionalities, as well as enhancements to the user interface for a more intuitive and convenient experience. Despite these suggestions, participants praised the application's simplicity and consistency, highlighting its suitability for the proposed tasks. The ability to revisit annotations ensures flexibility and ease of use in this context.

2023

Patch-based CNN Models for Bone Marrow Edema Detection Using MRI

Authors
Gomes, A; Pereira, T; Silva, F; Franco, P; Carvalho, DC; Dias, SC; Oliveira, HP;

Publication
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023, Istanbul, Turkiye, December 5-8, 2023

Abstract
Bone marrow edema (BME) or bone marrow lesion is the term attributed to an observed signal change within the bone marrow in magnetic resonance imaging (MRI). BME can be originated from multiple mechanisms, with pain being the main symptom. The presence of BME is an unspecific but sensitive sign with a wide differential diagnosis, that may act as a guide that leads to a systematic and correct interpretation of the magnetic resonance examination. An automatic approach for BME detection and quantification aims to reduce the overload of clinicians, decreasing human error and accelerating the time to the correct diagnosis. In this work, the bone region on the MRI slice was split into several patches and a CNN-based model was trained to detect BME in each patch from the MRI slice. The learning model developed achieved an AUC of 0.853 ± 0.056, showing that the CNN-based model can be used to detect BME in the MRI and confirming the patch strategy implemented to deal with the small data size and allowing the neural network to learn the specific information related with the classification task by reducing the region of the image to be considered. A learning model that can help clinicians with BME identification will decrease the time and the error for the diagnosis, and represent the first step for a more objective assessment of the BME. © 2023 IEEE.

  • 4
  • 5