2014
Authors
Cunha, M; Richter, C;
Publication
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Abstract
This paper analyzes the impact of climate dynamics on vegetation growth for a rural mountainous region in northeastern Portugal. As a measure of vegetation growth, we use the normalized difference vegetation index (NDVI), which is based on the ten-day synthesis data set (S10) from Satellite Pour l'Observation de la Terre (SPOT-VEGETATION) imagery from 1998 to 2011. We test whether the dynamic growth pattern of the NDVI has changed due to climate variability, and we test the relationship of NDVI with temperature and available soil water (ASW). In order to do so, we use a time-frequency approach based on Kalman filter regressions in the time domain. The advantage of our approach is that it can be used even in the case where the sample size is relatively small. By estimating the important relationships in the time domain first and transferring them into the frequency domain, we are still able to derive a complete spectrum over all frequencies. In our example, we find a change of the cyclical pattern for the spring season and different changes if we take into account all seasons. In other words, we can distinguish between deterministic changes of the vegetation cycles and stochastic changes that only occur randomly. Deterministic changes imply that the data-generating process has changed (such as climate), whereas stochastic changes imply only temporary changes. We find that individual seasons undergo cyclical changes that are different from other seasons. Moreover, our analysis shows that temperature and ASW are the main drivers of vegetation growth. We can also recognize a shift of the relative importance away from temperature to soil water.
2013
Authors
Pocas, I; Cunha, M; Pereira, LS; Allen, RG;
Publication
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION
Abstract
Water and energy balance interactions with vegetation in mountainous terrain are influenced by topographic effects, spatial variation in vegetation type and density, and water availability. This is the case for the mountainous areas of northern Portugal, where ancestral irrigated meadows (lameiros) are a main component of a complex vegetation mosaic. The widely used surface energy balance model METRIC was applied to four Landsat images to determine the spatial and temporal distribution of the energy balance terms in the identified land cover types (LCT). A discussion on the variability of evapotranspiration (ET) through the various vegetation types was supported by a comparison between the respective crop coefficients and those available in the literature corresponding to the LC, which has shown the appropriateness of METRIC estimates of ET. METRIC products derived from images of May and June - NDVI, surface temperature, net radiation, soil heat flux, sensible heat flux, and ET - were used to characterize the LCTs, through application of principal component analysis. Three principal components explained the variance of observed variables and their varimax rotated loadings allowed a good explanation of the behaviour of the explanatory variables in association with the LCTs. Information gained contributes to improve the characterization of the study area and may further support conservation and management of these mountain landscapes.
2023
Authors
Pinheiro, I; Moreira, G; da Silva, DQ; Magalhaes, S; Valente, A; Oliveira, PM; Cunha, M; Santos, F;
Publication
AGRONOMY-BASEL
Abstract
The world wine sector is a multi-billion dollar industry with a wide range of economic activities. Therefore, it becomes crucial to monitor the grapevine because it allows a more accurate estimation of the yield and ensures a high-quality end product. The most common way of monitoring the grapevine is through the leaves (preventive way) since the leaves first manifest biophysical lesions. However, this does not exclude the possibility of biophysical lesions manifesting in the grape berries. Thus, this work presents three pre-trained YOLO models (YOLOv5x6, YOLOv7-E6E, and YOLOR-CSP-X) to detect and classify grape bunches as healthy or damaged by the number of berries with biophysical lesions. Two datasets were created and made publicly available with original images and manual annotations to identify the complexity between detection (bunches) and classification (healthy or damaged) tasks. The datasets use the same 10,010 images with different classes. The Grapevine Bunch Detection Dataset uses the Bunch class, and The Grapevine Bunch Condition Detection Dataset uses the OptimalBunch and DamagedBunch classes. Regarding the three models trained for grape bunches detection, they obtained promising results, highlighting YOLOv7 with 77% of mAP and 94% of the F1-score. In the case of the task of detection and identification of the state of grape bunches, the three models obtained similar results, with YOLOv5 achieving the best ones with an mAP of 72% and an F1-score of 92%.
2023
Authors
Magalhaes, SC; Castro, L; Rodrigues, L; Padilha, TC; de Carvalho, F; dos Santos, FN; Pinho, T; Moreira, G; Cunha, J; Cunha, M; Silva, P; Moreira, AP;
Publication
IEEE SENSORS JOURNAL
Abstract
Several thousand grapevine varieties exist, with even more naming identifiers. Adequate specialized labor is not available for proper classification or identification of grapevines, making the value of commercial vines uncertain. Traditional methods, such as genetic analysis or ampelometry, are time-consuming, expensive, and often require expert skills that are even rarer. New vision-based systems benefit from advanced and innovative technology and can be used by nonexperts in ampelometry. To this end, deep learning (DL) and machine learning (ML) approaches have been successfully applied for classification purposes. This work extends the state of the art by applying digital ampelometry techniques to larger grapevine varieties. We benchmarked MobileNet v2, ResNet-34, and VGG-11-BN DL classifiers to assess their ability for digital ampelography. In our experiment, all the models could identify the vines' varieties through the leaf with a weighted F1 score higher than 92%.
2023
Authors
Rodrigues, L; Magalhaes, SA; da Silva, DQ; dos Santos, FN; Cunha, M;
Publication
AGRONOMY-BASEL
Abstract
The efficiency of agricultural practices depends on the timing of their execution. Environmental conditions, such as rainfall, and crop-related traits, such as plant phenology, determine the success of practices such as irrigation. Moreover, plant phenology, the seasonal timing of biological events (e.g., cotyledon emergence), is strongly influenced by genetic, environmental, and management conditions. Therefore, assessing the timing the of crops' phenological events and their spatiotemporal variability can improve decision making, allowing the thorough planning and timely execution of agricultural operations. Conventional techniques for crop phenology monitoring, such as field observations, can be prone to error, labour-intensive, and inefficient, particularly for crops with rapid growth and not very defined phenophases, such as vegetable crops. Thus, developing an accurate phenology monitoring system for vegetable crops is an important step towards sustainable practices. This paper evaluates the ability of computer vision (CV) techniques coupled with deep learning (DL) (CV_DL) as tools for the dynamic phenological classification of multiple vegetable crops at the subfield level, i.e., within the plot. Three DL models from the Single Shot Multibox Detector (SSD) architecture (SSD Inception v2, SSD MobileNet v2, and SSD ResNet 50) and one from You Only Look Once (YOLO) architecture (YOLO v4) were benchmarked through a custom dataset containing images of eight vegetable crops between emergence and harvest. The proposed benchmark includes the individual pairing of each model with the images of each crop. On average, YOLO v4 performed better than the SSD models, reaching an F1-Score of 85.5%, a mean average precision of 79.9%, and a balanced accuracy of 87.0%. In addition, YOLO v4 was tested with all available data approaching a real mixed cropping system. Hence, the same model can classify multiple vegetable crops across the growing season, allowing the accurate mapping of phenological dynamics. This study is the first to evaluate the potential of CV_DL for vegetable crops' phenological research, a pivotal step towards automating decision support systems for precision horticulture.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.