Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Carlos Manuel Soares

2025

Benchmarking Time Series Feature Extraction for Algorithm Selection

Authors
dos Santos, MR; Cerqueira, V; Soares, C;

Publication
Progress in Artificial Intelligence - 24th EPIA Conference on Artificial Intelligence, EPIA 2025, Faro, Portugal, October 1-3, 2025, Proceedings, Part I

Abstract
Effective selection of forecasting algorithms for time series data is a challenge in machine learning, impacting both predictive accuracy and efficiency. Metalearning, using features extracted from time series, offers a strategic approach to optimize algorithm selection. The utility of this approach depends on the amount of information the features contain about the behavior of the algorithms. Although there are several methods for systematic time series feature extraction, they have never been compared. This paper empirically analyzes the performance of each feature extraction method for algorithm selection and its impact on forecasting accuracy. Our study reveals that TSFRESH, TSFEATURES, and TSFEL exhibit comparable performance at algorithm selection accuracy, adeptly capturing time series characteristics essential for accurate algorithm selection. In contrast, Catch22 is found to be less effective for this purpose. In particular, TSFEL is identified as the most efficient method, balancing dimensionality and predictive performance. These findings provide insights for enhancing forecasting accuracy and efficiency through judicious selection of meta-feature extractors. © 2025 Elsevier B.V., All rights reserved.

  • 46
  • 46