Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Nuno Alexandre Pereira

2014

Network-Harmonized Scheduling for Multi-Application Sensor Networks

Authors
Gupta, V; Pereira, N; Gaur, S; Tovar, E; Rajkumar, R;

Publication
2014 IEEE 20TH INTERNATIONAL CONFERENCE ON EMBEDDED AND REAL-TIME COMPUTING SYSTEMS AND APPLICATIONS (RTCSA)

Abstract
Support for multiple concurrent applications is an important enabler for promoting the use of sensor networks as an infrastructure technology, where multiple users can deploy their applications independently. In such a scenario, different applications on a node may transmit packets at distinct periods, causing the node to change from sleep to active state more often, which negatively impacts the energy consumption of the whole network. In this paper, we propose to batch the transmissions together by defining a harmonizing period to align the transmissions from multiple applications at periodic boundaries. This harmonizing period is then leveraged to design a protocol that coordinates the transmissions across nodes and provides real-time guarantees in a multi-hop network. This protocol, which we call Network-Harmonized Scheduling (NHS), takes advantage of the periodicity introduced to assign offsets to nodes at different hop-levels such that collisions are always avoided, and deterministic behavior is enforced. NHS is a light-weight and distributed protocol that does not require any global state-keeping mechanism. We implemented NHS on the Contiki operating system and show how it can achieve a duty-cycle comparable to an ideal TDMA approach.

2014

Dynamic cluster scheduling for cluster-tree WSNs

Authors
Severino, R; Pereira, N; Tovar, E;

Publication
SPRINGERPLUS

Abstract
While Cluster-Tree network topologies look promising for WSN applications with timeliness and energy-efficiency requirements, we are yet to witness its adoption in commercial and academic solutions. One of the arguments that hinder the use of these topologies concerns the lack of flexibility in adapting to changes in the network, such as in traffic flows. This paper presents a solution to enable these networks with the ability to self-adapt their clusters' duty-cycle and scheduling, to provide increased quality of service to multiple traffic flows. Importantly, our approach enables a network to change its cluster scheduling without requiring long inaccessibility times or the re-association of the nodes. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs without significant changes to the protocol. Finally, we analyze and demonstrate the validity of our methodology through a comprehensive simulation and experimental validation using commercially available technology on a Structural Health Monitoring application scenario.

2014

Poster Abstract: A Harmony of Sensors

Authors
Gupta, V; Tovar, E; Pereira, N; Rajkumar, R;

Publication
PROCEEDINGS OF THE 13TH INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN' 14)

Abstract
Several concurrent applications running on a sensor network may cause a node to transmit packets at distinct periods, which increases the radio-switching rate and has significant impact in terms of the overall energy consumption. We propose to batch the transmissions together by defining a harmonizing period to align the transmissions from multiple applications at periodic boundaries. This harmonizing period is then leveraged to design a distributed protocol called Network-Harmonized Scheduling (NHS) that coordinates transmissions across nodes and provides real-time guarantees in a multi-hop network. Categories and Subject Descriptors-C. 3 [Computer Systems Organization]: Special-purpose and Application-Based Systems: Real-time and embedded systems

2016

Smartphone-based Transport Mode Detection for Elderly Care

Authors
Cardoso, N; Madureira, J; Pereira, N;

Publication
2016 IEEE 18TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATIONS AND SERVICES (HEALTHCOM)

Abstract
Smartphones are everywhere, and they are a very attractive platform to perform unobtrusive monitoring of users. In this work, we use common features of modern smartphones to build a human activity recognition (HAR) system for elderly care. We have built a classifier that detects the transport mode of the user including whether an individual is inactive, walking, in bus, in car, in train or in metro. We evaluated our approach using over 24 hours of transportation data from a group of 15 individuals. Our tests show that our classifier can detect the transportation mode with over 90% accuracy.

2016

Cyber-physical systems clouds: A survey

Authors
Chaari, R; Ellouze, F; Koubaa, A; Qureshi, B; Pereira, N; Youssef, H; Tovar, E;

Publication
COMPUTER NETWORKS

Abstract
Cyber-Physical Systems (CPSs) represent systems where computations are tightly coupled with the physical world, meaning that physical data is the core component that drives computation. Industrial automation systems, wireless sensor networks, mobile robots and vehicular networks are just a sample of cyber-physical systems. Typically, CPSs have limited computation and storage capabilities due to their tiny size and being embedded into larger systems. With the emergence of cloud computing and the Internet-of-Things (IoT), there are several new opportunities for these CPSs to extend their capabilities by taking advantage of the cloud resources in different ways. In this survey paper, we present an overview of research efforts on the integration of cyber-physical systems with cloud computing and categorize them into three areas: (1) remote brain, (2) big data manipulation, (3) and virtualization. In particular, we focus on three major CPSs namely mobile robots, wireless sensor networks and vehicular networks.

  • 11
  • 11