Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Luís Paulo Santos

2022

Interactive VPL-based global illumination on the GPU using fuzzy clustering

Authors
Colom, A; Marques, R; Santos, LP;

Publication
COMPUTERS & GRAPHICS-UK

Abstract
Physically-based synthesis of high quality imagery, including global illumination light transport phenomena, results in a significant workload, which makes interactive rendering a very challenging task. We propose a VPL-based ray tracing approach that runs entirely in the GPU and achieves interactive frame rates while handling global illumination light transport phenomena. This approach is based on clustering both shading points and VPLs and computing visibility only among clusters' representatives. A new massively parallel K-means clustering algorithm, enables efficient execution in the GPU. Rendering artifacts, that could result from the piecewise constant approximation of the VPLs/shading points visibility function introduced by the clustering, are smoothed away by resorting to an innovative approach based on fuzzy clustering and weighted interpolation of the visibility function. The effectiveness of the proposed approach is experimentally verified for a collection of scenes, with frame rates larger than 3 fps and up to 25 fps being demonstrated.(c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2025

Bayesian Quantum Amplitude Estimation

Authors
Ramôa, A; Santos, LP;

Publication
Quantum

Abstract
We present BAE, a problem-tailored and noise-aware Bayesian algorithm for quantum amplitude estimation. In a fault tolerant scenario, BAE is capable of saturating the Heisenberg limit; if device noise is present, BAE can dynamically characterize it and self-adapt. We further propose aBAE, an annealed variant of BAE drawing on methods from statistical inference, to enhance robustness. Our proposals are parallelizable in both quantum and classical components, offer tools for fast noise model assessment, and can leverage preexisting information. Additionally, they accommodate experimental limitations and preferred cost trade-offs. We propose a robust benchmark for amplitude estimation algorithms and use it to test BAE against other approaches, demonstrating its competitive performance in both noisy and noiseless scenarios. In both cases, it achieves lower error than any other algorithm as a function of the cost. In the presence of decoherence, it is capable of learning when other algorithms fail. © 2025 Elsevier B.V., All rights reserved.

2025

Reducing the resources required by ADAPT-VQE using coupled exchange operators and improved subroutines

Authors
Ramôa, M; Anastasiou, PG; Santos, LP; Mayhall, NJ; Barnes, E; Economou, SE;

Publication
NPJ QUANTUM INFORMATION

Abstract
Adaptive variational quantum algorithms arguably offer the best prospects for quantum advantage in the Noisy Intermediate-Scale Quantum era. Since the inception of the first such algorithm, the Adaptive Derivative-Assembled Problem-Tailored Variational Quantum Eigensolver (ADAPT-VQE), many improvements have appeared in the literature. We combine the key improvements along with a novel operator pool-which we term Coupled Exchange Operator (CEO) pool-to assess the cost of running state-of-the-art ADAPT-VQE on hardware in terms of measurement counts and circuit depth. We show a dramatic reduction of these quantum computational resources compared to the early versions of the algorithm: CNOT count, CNOT depth and measurement costs are reduced by up to 88%, 96% and 99.6%, respectively, for molecules represented by 12 to 14 qubits (LiH, H6 and BeH2). We also find that our state-of-the-art CEO-ADAPT-VQE outperforms the Unitary Coupled Cluster Singles and Doubles ansatz, the most widely used static VQE ansatz, in all relevant metrics, and offers a five order of magnitude decrease in measurement costs as compared to other static ans & auml;tze with competitive CNOT counts.

2024

Trainability issues in quantum policy gradients with softmax activations

Authors
Sequeira, A; Santos, LP; Barbosa, LS;

Publication
2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING, QCE, VOL 2

Abstract
This research addresses the trainability of Parameterized Quantum Circuit-based Softmax policies in Reinforcement Learning. We assess the trainability of these policies by examining the scaling of the expected value of the partial derivative of the log policy objective function. Here, we assume the hardware-efficient ansatz with blocks forming local 2-designs. In this setting, we show that if each expectation value representing the action's numerical preference is composed of a global observable, it leads to exponentially vanishing gradients. In contrast, for n-qubit systems, if the observables are log(n)-local, the gradients vanish polynomially with the number of qubits provided O(log n) depth. We also show that the expectation of the gradient of the log policy objective depend on the entire action space. Thus, even though global observables lead to concentration, the gradient signal can still be propagated in the presence of at least a single local observable. We validate the theoretical predictions in a series of ansatze and evaluate the performance of local and global observables in a multi-armed bandit setting.

2024

Trainability issues in quantum policy gradients

Authors
Sequeira, A; Santos, LP; Barbosa, LS;

Publication
MACHINE LEARNING-SCIENCE AND TECHNOLOGY

Abstract
This research explores the trainability of Parameterized Quantum Circuit-based policies in Reinforcement Learning, an area that has recently seen a surge in empirical exploration. While some studies suggest improved sample complexity using quantum gradient estimation, the efficient trainability of these policies remains an open question. Our findings reveal significant challenges, including standard Barren Plateaus with exponentially small gradients and gradient explosion. These phenomena depend on the type of basis-state partitioning and the mapping of these partitions onto actions. For a polynomial number of actions, a trainable window can be ensured with a polynomial number of measurements if a contiguous-like partitioning of basis-states is employed. These results are empirically validated in a multi-armed bandit environment.

2016

Exploring Heterogeneous Computing with Advanced Path Tracing Algorithms

Authors
Oliveira, A; Perdigao, C; Santos, LP; Proenca, A;

Publication
2016 23RD PORTUGUESE MEETING ON COMPUTER GRAPHICS AND INTERACTION (EPCGI)

Abstract
The CG research community has a renewed interest on rendering algorithms based on path space integration, mainly due to new approaches to discover, generate and exploit relevant light paths while keeping the numerical integrator unbiased or, at the very least, consistent. Simultaneously, the current trend towards massive parallelism and heterogeneous environments, based on a mix of conventional computing units with accelerators, is playing a major role both in HPC and embedded platforms. To efficiently use the available resources in these and future systems, algorithms and software packages are being revisited and reevaluated to assess their adequateness to these environments. This paper assesses the performance and scalability of three different path based algorithms running on homogeneous servers (dual multicore Xeons) and heterogeneous systems (those multicore plus manycore Xeon and NVidia Kepler GPU devices). These algorithms include path tracing (PT), its bidirectional counterpart (BPT) and the more recent Vertex Connect and Merge (VCM). Experimental results with two conventional scenes (one mainly diffuse, the other exhibiting specular-diffuse-specular paths) show that all algorithms scale well across the different platforms, the actual scalability depending on whether shared data structures are accessed or not (PT vs. BPT vs. VCM).

  • 4
  • 10