2012
Authors
Guimaraes, D; Carvalho, ML; Becker, M; von Bohlen, A; Geraldes, V; Rocha, I; Santos, JP;
Publication
X-RAY SPECTROMETRY
Abstract
Measurements made in feces and urine of Wistar rats exposed to lead acetate (n?=?20) in drinking water since the fetal period were compared with those obtained from a control group (n?=?20) in order to assess the age influence on Pb excretion. The measurements were made in different collections of rats aging between 1 and 11?months. To determine the Pb content of the samples, total reflection X-ray fluorescence (TXRF) and electrothermal atomic absorption spectrometry (ETAAS) were used for the urine samples and energy dispersive X-ray fluorescence (EDXRF) was used for the feces.
2012
Authors
Guimaraes, D; Carvalho, ML; Geraldes, V; Rocha, I; Alves, LC; Santos, JP;
Publication
JOURNAL OF TRACE ELEMENTS IN MEDICINE AND BIOLOGY
Abstract
The concentration of lead in liver and kidneys of Wistar rats, fed with lead since fetal period in relation to their age and to a control group, was determined. A group of rats was exposed to lead acetate (n = 30) in drinking water and the other group was exposed to normal water (n = 20). Samples were collected from rats aging between 1 and 11 months and were analyzed by Energy Dispersive X-ray Fluorescence (EDXRF) without any chemical preparation. The EDXRF results were assessed by the PIXE (Proton Induced X-ray Emission) technique. The formaldehyde used to preserve the samples was also analyzed by ETAAS (Electro-Thermal Atomic Absorption Spectrometry) in order to verify if there was any loss of lead from the samples to the formaldehyde. We found that the loss was not significant (<2%). Concerning the mean values of the lead concentration measured in the contaminated soft tissues, in liver they range from 6 to 22 mu g g(-1), and in kidneys from 44 to 79 mu g g(-1). The control rats show, in general, values below the EDXRF detection limit (2 mu g g(-1)). The ratio kidney/liver ranges from 2 to 10 and is strongly positively correlated with the age of the animals. A Spearman correlation matrix to investigate the correlation between elemental concentrations and the dependence of these concentrations with age showed that there is a strong positive correlation with age for lead in the liver but not in the kidney. The correlation matrix showed also that the concentration of lead in these two soft tissues is not correlated. The lead accumulation in liver is made by different plateaus that strongly decrease with age. It was verified the existence of two levels of accumulation in kidney, not very highlighted, which might be indicative of a maximum accumulation level for lead in kidney.
2011
Authors
Guimaraes, D; Santos, JP; Carvalho, ML; Vale, G; Santos, HM; Geraldes, V; Rocha, I; Capelo, JL;
Publication
TALANTA
Abstract
An ultrasonic assisted solid-liquid extraction method was developed to determine the level of lead in the brain and urine of rats. Lead was determined by electrothermal atomic absorption spectrometry with longitudinal-Zeeman background correction. Several analytical drawbacks were addressed and overcome, namely small brain sample mass and the formation of precipitate in the urine samples. Utrasonication provided by an ultrasonic probe succeeded in extracting lead from brain samples. Furthermore, it was demonstrated that the formation of a precipitate lowered the lead content in the liquid phase of the urine. Lead was back extracted from the precipitate to the liquid phase with the aid of ultrasonic energy and acidifying the urine with 10% v/v nitric acid. A microwave-assisted acid digestion protocol was used to check the completeness of the lead extraction. The within bath and between bath precision was 5% (n = 9) and 7% (n = 3) respectively. The limit of quantification was 1.05 mu g g(-1) for brain samples and 2.1 mu g L(-1) for urine samples. A total of 6 samples of urine and 12 samples of brain from control rats and another 6 samples of urine and 12 samples of brain from rats fed with tap water rich in lead acetate were used in this research. Lead levels in brain and urine from exposed rats ranged from 1.9 +/- 0.2 mu g g(-1) to 3.5 +/- 0.2 mu g g(-1) and from 752 +/- 56 mu g L(-1) to 60.9 +/- 1.2 mg L(-1) respectively. Statistically significant differences of levels of lead in brain and urine were found between exposed and non exposed rats.
2012
Authors
Guimaraes, D; Carvalho, ML; Geraldes, V; Rocha, I; Santos, JP;
Publication
METALLOMICS
Abstract
The accumulation of lead in several bones of Wistar rats with time was determined and compared for the different types of bones. Two groups were studied: a control group (n = 20), not exposed to lead and a contaminated group (n = 30), exposed to lead from birth, first indirectly through mother's milk, and then directly through a diet containing lead acetate in drinking water (0.2%). Rats age ranged from 1 to 11 months, with approximately 1 month intervals and each of the collections had 3 contaminated rats and 2 control rats. Iliac, femur, tibia-fibula and skull have been analysed by Energy Dispersive X-ray Fluorescence Technique (EDXRF). Samples of formaldehyde used to preserve the bone tissues were also analysed by Electrothermal Atomic Absorption (ETAAS), showing that there was no significant loss of lead from the tissue to the preservative. The bones mean lead concentration of exposed rats range from 100 to 300 mu g g(-1) while control rats never exceeded 10 mu g g(-1). Mean bone lead concentrations were compared and the concentrations were higher in iliac, femur and tibia-fibula and after that skull. However, of all the concentrations in the different collections, only those in the skull were statistically significantly different (p < 0.05) from the other types of bones. Analysis of a radar chart also allowed us to say that these differences tend to diminish with age. The Spearman correlation test applied to mean lead concentrations showed strong and very strong positive correlations between all different types of bones. This test also showed that mean lead concentrations in bones are negatively correlated with the age of the animals. This correlation is strong in iliac and femur and very strong in tibia-fibula and skull. It was also shown that the decrease of lead accumulation with age is made by three plateaus of accumulation, which coincide, in all analysed bones, between 2nd-3rd and 9th-10th months.
2023
Authors
Lopes, T; Rodrigues, P; Cavaco, R; Capela, D; Ferreira, MFS; Guimaraes, D; Jorge, PAS; Silva, NA;
Publication
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
Abstract
Imaging the spatial distribution of chemical elements at a sample surface is a common application of laserinduced breakdown spectroscopy with vast scientific and technological applications. Yet, typical imaging solutions only explore the creation of two-dimensional maps, which can limit the interpretability of the results and further diagnostics in three-dimensional settings. Within this context, this work explores the combination of spectral imaging techniques and photogrammetry to deploy a versatile solution for the creation of threedimensional spectral imaging models. First, by making use of a numerical algorithm that is able to match features in the spectral image with those of the three-dimensional model, we show how to match the mesh from distinct sensor modalities. Then, we describe a possible visualization workflow, making use of dedicated photogrammetry and visualization software to easily deploy interactive models. Overall, the results demonstrate the versatility of our approach and pave for the development of novel spectral imaging diagnostic strategies that are able to deliver better qualitative analysis and insight in the three-dimensional space.
2023
Authors
Capela, D; Ferreira, M; Lima, A; Jorge, P; Guimarães, D; Silva, NA;
Publication
Results in Optics
Abstract
Laser-induced breakdown spectroscopy is a spectroscopic technique that allows for fast elemental mapping of heterogeneous samples. Yet, detailed maps need high-resolution sampling grids, which can turn the task into a time-consuming process and can increase sample damage. In this work, we present the implementation of an imaged-based intelligent mesh algorithm that makes use of superpixel segmentation to optimize elemental mapping processes. Our results show that the approach can increase the elemental mapping resolution and decrease acquisition times, fostering opportunities for applications that benefit from minimal sample damage such as heritage analysis, or timely analysis such as industrial applications. © 2022 The Author(s)
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.