2024
Authors
Guimaraes, D; Monteiro, C; Teixeira, J; Lopes, T; Capela, D; Dias, F; Lima, A; Jorge, PAS; Silva, NA;
Publication
HELIYON
Abstract
As lithium-bearing minerals become critical raw materials for the field of energy storage and advanced technologies, the development of tools to accurately identify and differentiate these minerals is becoming essential for efficient resource exploration, mining, and processing. Conventional methods for identifying ore minerals often depend on the subjective observation skills of experts, which can lead to errors, or on expensive and time-consuming techniques such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS) or Optical Emission Spectroscopy (ICPOES). More recently, Raman Spectroscopy (RS) has emerged as a powerful tool for characterizing and identifying minerals due to its ability to provide detailed molecular information. This technique excels in scenarios where minerals have similar elemental content, such as petalite and spodumene, by offering distinct vibrational information that allows for clear differentiation between such minerals. Considering this case study and its particular relevance to the lithium- mining industry, this manuscript reports the development of an unsupervised methodology for lithium-mineral identification based on Raman Imaging. The deployed machine-learning solution provides accurate and interpretable results using the specific bands expected for each mineral. Furthermore, its robustness is tested with additional blind samples, providing insights into the unique spectral signatures and analytical features that enable reliable mineral identification.
2024
Authors
Cunha, C; Monteiro, C; Vaz, A; Silva, S; Frazao, O; Novais, S;
Publication
SENSORS
Abstract
This paper presents an approach to enhancing sensitivity in optical sensors by integrating self-image theory and graphene oxide coating. The sensor is specifically engineered to quantitatively assess glucose concentrations in aqueous solutions that simulate the spectrum of glucose levels typically encountered in human saliva. Prior to sensor fabrication, the theoretical self-image points were rigorously validated using Multiphysics COMSOL 6.0 software. Subsequently, the sensor was fabricated to a length corresponding to the second self-image point (29.12 mm) and coated with an 80 mu m/mL graphene oxide film using the Layer-by-Layer technique. The sensor characterization in refractive index demonstrated a wavelength sensitivity of 200 +/- 6 nm/RIU. Comparative evaluations of uncoated and graphene oxide-coated sensors applied to measure glucose in solutions ranging from 25 to 200 mg/dL showed an eightfold sensitivity improvement with one bilayer of Polyethyleneimine/graphene. The final graphene oxide-based sensor exhibited a sensitivity of 10.403 +/- 0.004 pm/(mg/dL) and demonstrated stability with a low standard deviation of 0.46 pm/min and a maximum theoretical resolution of 1.90 mg/dL.
2023
Authors
Monteiro, CS; Ferreira, M; Mendes, JP; Coelho, LCC; Silva, S; Frazão, O;
Publication
EPJ Web of Conferences
Abstract
2023
Authors
Monteiro, CS; Ferreira, M; Mendes, JP; Coelho, LCC; Silva, SO; Frazao, O;
Publication
SENSORS AND ACTUATORS A-PHYSICAL
Abstract
Measuring gas and liquid flow rate is paramount in various scientific and industrial applications. This work presents an optical fiber flowmeter based on a graphene oxide (GO) coated Michelson interferometer. The interferometer is fabricated using a long-period fiber grating (LPFG) followed by a GO-coated single-mode fiber (SMF). By radiating the GO coating, it experiences photothermic effect that induces local heating of the film. This results in a variation in the effective refractive index in the cladding modes, which induces a phase shift on the interferometer spectrum. When a gas flow is introduced near the coated fiber, the hot-wire region will experience a reduction in temperature proportional to the flow rate. The flowmeter exhibited a linear wavelength shift to the flow rate with an absolute sensitivity of 17.4 +/- 0.8 pm/(L.min-1) for gas flow rates between 2 and 8 L/ min. Furthermore, the dynamic response of the sensor was studied, attaining a maximum response time of 1.1 +/- 0.4 s
2023
Authors
Frazão, O; Robalinho, P; Vaz, A; Soares, L; Soares, B; Monteiro, C; Novais, S; Silva, S;
Publication
EPJ Web of Conferences
Abstract
2023
Authors
Monteiro, CS; Perez Herrera, RA; Silva, SO; Frazão, O;
Publication
Proceedings of the 11th International Conference on Photonics, Optics and Laser Technology, PHOTOPTICS 2023, Lisbon, Portugal, February 16-18, 2023.
Abstract
The use of graphene oxide (GO) as a saturable absorber for short pulses generation in an Erbium-doped fiber laser was studied and demonstrated. The saturable absorber consisted of a thin GO film, with a high concentration of monolayer GO flakes, spray-coated on the end face of a ferrule-connected fiber. By including the saturable absorber in the laser cavity and controlling the intra-cavity polarization, the generation of shortpulsed light was achieved under mode-locking and Q-switching operations. Under mode-locking operation, it was observed a pulse train with a fundamental repetition rate of 1.48 MHz, with a working wavelength centered at 1564.4 nm. In the Q-switch operation, a pulse train with a 12.7 kHz repetition rate and a 14.3 µs pulse duration was attained for a 230-mA pump current. Further investigation showed a linear dependence of the repetition rate with the pump power, attaining frequencies between 12.7 and 14.4 kHz. © 2023 by SCITEPRESS - Science and Technology Publications, Lda.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.