2025
Authors
de Arriba-Pérez, F; García-Méndez, S; Leal, F; Malheiro, B; Burguillo, JC;
Publication
INTEGRATED COMPUTER-AIDED ENGINEERING
Abstract
Social media platforms, increasingly used as news sources for varied data analytics, have transformed how information is generated and disseminated. However, the unverified nature of this content raises concerns about trustworthiness and accuracy, potentially negatively impacting readers' critical judgment due to disinformation. This work aims to contribute to the automatic data quality validation field, addressing the rapid growth of online content on wiki pages. Our scalable solution includes stream-based data processing with feature engineering, feature analysis and selection, stream-based classification, and real-time explanation of prediction outcomes. The explainability dashboard is designed for the general public, who may need more specialized knowledge to interpret the model's prediction. Experimental results on two datasets attain approximately 90% values across all evaluation metrics, demonstrating robust and competitive performance compared to works in the literature. In summary, the system assists editors by reducing their effort and time in detecting disinformation.
2025
Authors
García-Méndez, S; de Arriba-Pérez, F; Leal, F; Veloso, B; Malheiro, B; Burguillo-Rial, JC;
Publication
SCIENTIFIC REPORTS
Abstract
The public transportation sector generates large volumes of sensor data that, if analyzed adequately, can help anticipate failures and initiate maintenance actions, thereby enhancing quality and productivity. This work contributes to a real-time data-driven predictive maintenance solution for Intelligent Transportation Systems. The proposed method implements a processing pipeline comprised of sample pre-processing, incremental classification with Machine Learning models, and outcome explanation. This novel online processing pipeline has two main highlights: (i) a dedicated sample pre-processing module, which builds statistical and frequency-related features on the fly, and (ii) an explainability module. This work is the first to perform online fault prediction with natural language and visual explainability. The experiments were performed with the Metropt data set from the metro operator of Porto, Portugal. The results are above 98 % for f-measure and 99 % for accuracy. In the context of railway predictive maintenance, achieving these high values is crucial due to the practical and operational implications of accurate failure prediction. In the specific case of a high f-measure, this ensures that the system maintains an optimal balance between detecting the highest possible number of real faults and minimizing false alarms, which is crucial for maximizing service availability. Furthermore, the accuracy obtained enables reliability, directly impacting cost reduction and increased safety. The analysis demonstrates that the pipeline maintains high performance even in the presence of class imbalance and noise, and its explanations effectively reflect the decision-making process. These findings validate the methodological soundness of the approach and confirm its practical applicability for supporting proactive maintenance decisions in real-world railway operations. Therefore, by identifying the early signs of failure, this pipeline enables decision-makers to understand the underlying problems and act accordingly swiftly.
2025
Authors
Amaral, G; Martins, J; Martins, P; Dias, A; Almeida, J; Silva, E;
Publication
2025 International Conference on Unmanned Aircraft Systems, ICUAS 2025
Abstract
The knowledge of the precise 3D position of a target in tracking applications is a fundamental requirement. The lack of a low-cost single sensor capable of providing the three-dimensional position (of a target) makes it necessary to use complementary sensors together. This research presents a Local Positioning System (LPS) for outdoor scenarios, based on a data fusion approach for unmodified UAV tracking, combining a vision sensor and mmWave radar. The proposed solution takes advantage of the radar's depth observation ability and the potential of a neural network for image processing. We have evaluated five data association approaches for radar data cluttered to get a reliable set of radar observations. The results demonstrated that the estimated target position is close to an exogenous ground truth obtained from a Visual Inertial Odometry (VIO) algorithm executed onboard the target UAV. Moreover, the developed system's architecture is prepared to be scalable, allowing the addition of other observation stations. It will increase the accuracy of the estimation and extend the actuation area. To the best of our knowledge, this is the first work that uses a mmWave radar combined with a camera and a machine learning algorithm to track a UAV in an outdoor scenario. © 2025 IEEE.
2025
Authors
Donner, RV; Barbosa, SM;
Publication
Abstract
2025
Authors
Barbosa, S; Chambers, S;
Publication
Abstract
2025
Authors
Susana Barbosa; Scott Chambers; Wlodzimierz Pawlak; Krzysztof Fortuniak; Jussi Paatero; Annette Röttger; Stefan Röttger; Xuemeng Chen; Anca Melintescu; Damien Martin; Dafina Kikaj; Angelina Wenger; Kieran Stanley; Joana Barcelos Ramos; Juha Hatakka; Timo Anttila; Hermanni Aaltonen; Nuno Dias; Maria Eduarda Silva; João Castro; Hanna K. Lappalainen; Eduardo Azevedo; Markku Kulmala;
Publication
EPJ Nuclear Sciences & Technologies
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.