Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2022

Active Neutralizing Mats for Corrosive Chemical Storage

Authors
Fernandes, RDV; Melro, L; Padrao, J; Ribeiro, AI; Mehravani, B; Monteiro, F; Pereira, E; Martins, MS; Dourado, N; Zille, A;

Publication
GELS

Abstract
Laboratories and industries that handle chemicals are ubiquitously prone to leakages. These may occur in storage rooms, cabinets or even in temporary locations, such as workbenches and shelves. A relevant number of these chemicals are corrosive, thus commercial products already exist to prevent material damage and injuries. One strategy consists of the use of absorbing mats, where few display neutralizing properties, and even less a controlled neutralization. Nevertheless, to the authors' knowledge, the commercially available neutralizing mats are solely dedicated to neutralizing acid or alkali solutions, never both. Therefore, this work describes the development and proof of a completely novel concept, where a dual component active mat (DCAM) is able to perform a controlled simultaneous neutralization of acid and alkali leakages by using microencapsulated active components. Moreover, its active components comprise food-grade ingredients, embedded in nonwoven polypropylene. The acid neutralizing mats contain sodium carbonate (Na2CO3) encapsulated in sodium alginate microcapsules (MC-ASC). Alkali neutralizing mats possess commercial encapsulated citric acid in hydrogenated palm oil (MIRCAP CT 85-H). A DCAM encompasses both MC-ASC and MIRCAP CT 85-H and was able to neutralize solutions up to 10% (v/v) of hydrochloric acid (HCl) and sodium hydroxide (NaOH). The efficacy of the neutralization was assessed by direct titration and using pH strip measurement tests to simulate the leakages. Due to the complexity of neutralization efficacy evaluation based solely on pH value, a thorough conductivity study was performed. DCAM reduced the conductivity of HCl and NaOH (1% and 2% (v/v)) in over 70%. The composites were characterized by scanning electron microscopy (SEM), differential calorimetry (DSC) and thermogravimetric analysis (TGA). The size of MC-ASC microcapsules ranged from 2 mu m to 8 mu m. Finally, all mat components displayed thermal stability above 150 degrees C.

2022

Development of a high-power multilayer PVDF acoustic projector for 40 to 80 kHz band

Authors
Silva, A; Hughes, A; Pozzatti, D; Zabel, F; Viegas, R; Martins, MS;

Publication
2022 OCEANS HAMPTON ROADS

Abstract
A piston type projector using the PVDF piezoelectric polymer was developed for operating in underwater environment, below 100 kHz. For those frequencies PZT piezoelectric ceramic is usually a preferable choice and PVDF is only considered for frequencies above a few hundreds of kHz. This paper will show that efficient underwater acoustic projectors for frequencies below 100 kHz can be implemented regarding an appropriate impedance adapter is being used. The developed project presents a calibrated transmitting voltage response (TVR) of approximately 166, 160 and 175 dB at 40, 50 and 75 kHz, respectively. The PVDF TVR values are compatible with the PZT projectors available on market with the advantage of having a larger bandwidth than most PZT projectors. To the authors knowledge this is the first time that a PVDF projector attain such characteristics. Although theoretically the PVDF projector bandwidth is larger than 40 to 80 kHz, in practice it was observed that only between those frequencies the project presents a stable operation for the transmission of long-term signals.

2022

Development of an automated sensor for in-situ continuous monitoring of streambed sediment height of a waterway

Authors
Matos, T; Rocha, JL; Faria, CL; Martins, MS; Henriques, R; Goncalves, LM;

Publication
SCIENCE OF THE TOTAL ENVIRONMENT

Abstract
The sedimentary processes play a major role in every aquatic ecosystem, however, there are few automated options for in-situ monitoring of sediment displacement in the streambed of waterways. We present an automated optical instrument for in-situ continuous monitoring of sediment deposition and erosion of the streambed that requires no calibration. With a production cost of 32euro, power consumption of 300 mu A in sleep mode, and capacity to monitor the bedform of a waterway, the sensor was developed to evaluate the sediment dynamics of coastal areas with a wide spatial and temporal resolution. The novel device is intended to be buried in the sand and uses 32 infrared channels to monitor the streambed sediment height. For testing purposes, a maximum measuring length of 160 mm and 5 mm resolution was chosen, but these values are scalable. Sensors can be built with different ranges and precision according to the needs of the fieldwork. A laboratory experiment was conducted to demonstrate the working principle of the instrument and its behaviour regarding the turbidity originated by suspended sediment and the settling and deposition of the suspended particles. The device was deployed for 119 days in an estuarine area and was able to detect patterns in the sediment deposition and resuspension during the tidal cycles. Also, abnormal events occurred during the experiment as floods and algae blooms. During these events, the sensor was able to record exceptional erosion and sediment deposition rates. The reported automated instrument can be broadly used in sedimentary studies or management and planning of fluvial and maritime infrastructures to provide real-time information about the changes in the bedform of the watersheds.

2022

Development of an Ultraviolet-C Irradiation Room in a Public Portuguese Hospital for Safe Re-Utilization of Personal Protective Respirators

Authors
Padrao, J; Nicolau, T; Felgueiras, HP; Calcada, C; Veiga, MI; Osorio, NS; Martins, MS; Dourado, N; Taveira-Gomes, A; Ferreira, F; Zille, A;

Publication
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH

Abstract
Almost two years have passed since COVID-19 was officially declared a pandemic by the World Health Organization. However, it still holds a tight grasp on the entire human population. Several variants of concern, one after another, have spread throughout the world. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant may become the fastest spreading virus in history. Therefore, it is more than evident that the use of personal protective equipment (PPE) will continue to play a pivotal role during the current pandemic. This work depicts an integrative approach attesting to the effectiveness of ultra-violet-C (UV-C) energy density for the sterilization of personal protective equipment, in particular FFP2 respirators used by the health care staff in intensive care units. It is increasingly clear that this approach should not be limited to health care units. Due to the record-breaking spreading rates of SARS-CoV-2, it is apparent that the use of PPE, in particular masks and respirators, will remain a critical tool to mitigate future pandemics. Therefore, similar UV-C disinfecting rooms should be considered for use within institutions and companies and even incorporated within household devices to avoid PPE shortages and, most importantly, to reduce environmental burdens.

2022

Fracture characterisation of bone-cement bonded joints under mode I loading

Authors
Campos, TD; Barbosa, MLS; Olmos, AAR; Martins, M; Pereira, FAM; De Moura, MFSF; Zille, A; Dourado, N;

Publication
THEORETICAL AND APPLIED FRACTURE MECHANICS

Abstract
Over the years, many techniques have been developed for the stabilisation of bone fractures. The study of the adhesion of bone-to-bone cement is an important step towards the development of new immobilization systems. Although bone cement has been used for more than fifty years, very few studies have been performed regarding the evaluation of fracture properties. In this work, numerical and experimental investigations were conducted to evaluate the strain energy release rate under mode I loading in a bone-cement bonded joint, using the Double Cantilever Beam (DCB) test. Cohesive zone laws were also measured combining the finite element method with non-linear elastic fracture mechanics. This has been made in a cortical bone bonded joint with polymethylmethacrylate (PMMA). Consistent results have been obtained regarding fracture toughness in a widely used bone-to-bone cement joint in many biomedical applications.

2022

A low-cost, low-power and low-size multi-parameter station for real-time and online monitoring of the coastal area

Authors
Matos, T; Rocha, JL; Dinis, H; Faria, CL; Martins, MS; Henriques, R; Goncalves, LM;

Publication
2022 OCEANS HAMPTON ROADS

Abstract
The seashore is the front door to the oceans and the sustain of many societies. However, humans still seem to be unable to unlock new paradigms to project sustainable growth of marine and coastal ecosystems. One of the reasons for this is the lack of knowledge about the natural processes that systematically change their balance. Thus, a new generation of tools is needed to gather data to validate and predict geostatistical models and protect this important resource. This manuscript reports the design and validation of a multi-parameter marine station installed in the estuary of Cavado - Portugal. For the last two years, the station has hosted several own-developed sensors to monitor water parameters, and it was designed to send the monitoring data, in real-time, to a public website so the information can be shared with the communities. So far, the monitoring station has been able to produce data about hydraulic and environmental dynamics, such as water column height or sediment displacement, as well as seasonal events and other extreme phenomena occurrences such as floods. The proposed monitoring system, built in a low-power and low-cost philosophy, aims to allow massive replication all over the coastal areas and to deliver qualitative and quantitative data for better management and planning of the littoral.

  • 37
  • 182