2022
Authors
Leal, F; Garcia-Mendez, S; Malheiro, B; Burguillo, JC;
Publication
INFORMATION SYSTEMS AND TECHNOLOGIES, WORLDCIST 2022, VOL 1
Abstract
Collaborative filtering is a widely used recommendation technique, which often relies on rating information shared by users, i.e., crowdsourced data. These filters rely on predictive algorithms, such as, memory or model based predictors, to build direct or latent user and item profiles from crowdsourced data. To predict unknown ratings, memory-based approaches rely on the similarity between users or items, whereas model-based mechanisms explore user and item latent profiles. However, many of these filters are opaque by design, leaving users with unexplained recommendations. To overcome this drawback, this paper introduces Explug, a local model-agnostic plug-in that works alongside stream-based collaborative filters to reorder and explain recommendations. The explanations are based on incremental user Trust & Reputation profiling and co-rater relationships. Experiments performed with crowdsourced data from TripAdvisor show that Explug explains and improves the quality of stream-based collaborative filter recommendations.
2022
Authors
Garcia-Mendez, S; Leal, F; Malheiro, B; Burguillo-Rial, JC; Veloso, B; Chis, AE; Gonzalez-Velez, H;
Publication
SIMULATION MODELLING PRACTICE AND THEORY
Abstract
Data crowdsourcing is a data acquisition process where groups of voluntary contributors feed platforms with highly relevant data ranging from news, comments, and media to knowledge and classifications. It typically processes user-generated data streams to provide and refine popular services such as wikis, collaborative maps, e-commerce sites, and social networks. Nevertheless, this modus operandi raises severe concerns regarding ill-intentioned data manipulation in adver-sarial environments. This paper presents a simulation, modelling, and classification approach to automatically identify human and non-human (bots) as well as benign and malign contributors by using data fabrication to balance classes within experimental data sets, data stream modelling to build and update contributor profiles and, finally, autonomic data stream classification. By employing WikiVoyage - a free worldwide wiki travel guide open to contribution from the general public - as a testbed, our approach proves to significantly boost the confidence and quality of the classifier by using a class-balanced data stream, comprising both real and synthetic data. Our empirical results show that the proposed method distinguishes between benign and malign bots as well as human contributors with a classification accuracy of up to 92%.
2022
Authors
Ferreira, P; Malheiro, B; Silva, M; Borges Guedes, P; Justo, J; Ribeiro, C; Duarte, A;
Publication
EDULEARN Proceedings - EDULEARN22 Proceedings
Abstract
2022
Authors
Ferreira, P; Malheiro, B; Silva, M; Borges Guedes, P; Justo, J; Ribeiro, C; Duarte, A;
Publication
EDULEARN Proceedings - EDULEARN22 Proceedings
Abstract
2022
Authors
Vasco, E; Veloso, B; Malheiro, B;
Publication
Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The PAAMS Collection - 20th International Conference, PAAMS 2022, L'Aquila, Italy, July 13-15, 2022, Proceedings
Abstract
CloudAnchor is a multi-agent brokerage platform for the negotiation of Infrastructure as a Service cloud resources between Small and Medium Sized Enterprises, acting either as providers or consumers. This project entails the research, design, and implementation of a smart contract solution to permanently record and manage contractual and behavioural stakeholder data on a blockchain network. Smart contracts enable safe contract code execution, increasing trust between parties and ensuring the integrity and traceability of the chained contents. The defined smart contracts represent the inter-business trustworthiness and Service Level Agreements established within the platform. CloudAnchor interacts with the blockchain network through a dedicated Application Programming Interface, which coordinates and optimises the submission of transactions. The performed tests indicate the success of this integration: (i) the number and value of negotiated resources remain identical; and (ii) the run-time increases due to the inherent latency of the blockchain operation. Nonetheless, the introduced latency does not affect the brokerage performance, proving to be an appropriate solution for reliable partner selection and contractual enforcement between untrusted parties. This novel approach stores all brokerage strategic knowledge in a distributed, decentralised, and immutable database. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2022
Authors
Alves, PM; Filipe, RA; Malheiro, B;
Publication
EXPERT SYSTEMS
Abstract
Telecommunication operators compete not only for new clients, but, above all, to maintain current ones. The modelling and prediction of the top-up behaviour of prepaid mobile subscribers allows operators to anticipate customer intentions and implement measures to strengthen customer relationship. This research explores a data set from a Portuguese operator, comprising 30 months of top-up events, to predict the top-up monthly frequency and average value of prepaid subscribers using offline and online multi-target regression algorithms. The offline techniques adopt a monthly sliding window, whereas the online techniques use an event sliding window. Experiments were performed to determine the most promising set of features, analyse the accuracy of the offline and online regressors and the impact of sliding window dimension. The results show that online regression outperforms the offline counterparts. The best accuracy was achieved with adaptive model rules and a sliding window of 500,000 events (approximately 5 months). Finally, the predicted top-up monthly frequency and average value of each subscriber were converted to individual date and value intervals, which can be used by the operator to identify early signs of subscriber disengagement and immediately take pre-emptive measures.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.