2023
Authors
Pinto, AM; Marques, JVA; Abreu, N; Campos, DF; Pereira, MI; Gonçalves, E; Campos, HJ; Pereira, P; Neves, F; Matos, A; Govindaraj, S; Durand, L;
Publication
OCEANS 2023 - LIMERICK
Abstract
The demonstration of robotic technologies in real environments is essential for technology developers and end-users to fully showcase the benefits of theirs solutions, and contributes to the promotion of the transition of inspection and maintenance methodologies towards automated robotic strategies. However, before allowing technologies to be demonstrated in real, operating offshore wind-farms, there is a need to de-risk the technology, to ensure its safe operation offshore. As part of the ATLANTIS project, a pioneer pilot infrastructure, the ATLANTIS Test Centre, was installed in Viana do Castelo, Portugal. This infrastructure will allow the demonstration of key enabling robotic technologies for offshore inspection and maintenance. The Test Centre is composed of two distinct testbeds, and a supervisory control centre, enabling the de-risking, testing, validation and demonstration of technologies, in both near-real and real environments. This paper presents the details of the Coastal Testbed of the ATLANTIS Test Centre, from implementation to available resources and infrastructures and environment details.
2023
Authors
Nunes, A; Gaspar, AR; Matos, A;
Publication
OCEANS 2023 - LIMERICK
Abstract
Nowadays, the semantic segmentation of the images of the underwater world is crucial, as these results can be used in various applications such as manipulation or one of the most important in the semantic mapping of the environment. In this way, the structure of the scene observed by the robot can be recovered, and at the same time, the robot can identify the class of objects seen and choose the next action during the mission. However, semantic segmentation using cameras in underwater environments is a non-trivial task, as it depends on the quality of the acquired images (which change over time due to various factors), the diversification of objects and structures that can be inspected during the mission, and the quality of the training performed prior to the evaluation, as poor training means an incorrect estimation of the object class or a poor delineation of the object. Therefore, in this paper, a comparative study of suitable modern semantic segmentation algorithms is conducted to determine whether they can be used in underwater scenarios. Nowadays, it is very important to equip the robot with the ability to inspect port facilities, as this scenario is of particular interest due to the large variety of objects and artificial structures, and to know and recognise most of them. For this purpose, the most suitable dataset available online was selected, which is the closest to the intended context. Therefore, several parameters and different conditions were considered to perform a complete evaluation, and some limitations and improvements are described. The SegNet model shows the best overall accuracy, reaching more than 80%, but some classes such as robots and plants degrade the quality of the performance (considering the mean accuracy and the mean IoU metric).
2023
Authors
Gaspar, AR; Nunes, A; Matos, A;
Publication
OCEANS 2023 - LIMERICK
Abstract
The harbour infrastructures have some structures that still need regular inspection. However, the nature of this environment presents a number of challenges when it comes to determining an accurate vehicle position and consequently performing successful image similarity detection. In addition, the underwater environment is highly dynamic, making place recognition harder because the appearance of a place can change over time. In these close-range operations, the visual sensors have a major impact. There are some factors that degrade the quality of the captured images, but image preprocessing steps are increasingly used. Therefore, in this paper, a purely visual similarity detection with enhancement technique is proposed to overcome the inherent perceptual problems in a port scenario. Considering the lack of available data in this context and to facilitate the variation of environmental parameters, a harbour scenario was simulated using the Stonefish simulator. The experiments were performed on some predefined trajectories containing the poor visibility conditions typical of these scenarios. The place recognition approach improves the performance by up to 10% compared to the results obtained with captured images. In general, it provides a good balance in coping with turbidity and light incidence at low computational cost and achieves a performance of about 80%.
2023
Authors
Nunes, A; Matos, A;
Publication
JOURNAL OF MARINE SCIENCE AND ENGINEERING
Abstract
Nowadays, semantic segmentation is used increasingly often in exploration by underwater robots. For example, it is used in autonomous navigation so that the robot can recognise the elements of its environment during the mission to avoid collisions. Other applications include the search for archaeological artefacts, the inspection of underwater structures or in species monitoring. Therefore, it is necessary to improve the performance in these tasks as much as possible. To this end, we compare some methods for image quality improvement and data augmentation and test whether higher performance metrics can be achieved with both strategies. The experiments are performed with the SegNet implementation and the SUIM dataset with eight common underwater classes to compare the obtained results with the already known ones. The results obtained with both strategies show that they are beneficial and lead to better performance results by achieving a mean IoU of 56% and an increased overall accuracy of 81.8%. The result for the individual classes shows that there are five classes with an IoU value close to 60% and only one class with an IoU value less than 30%, which is a more reliable result and is easier to use in real contexts.
2023
Authors
Gaspar, AR; Matos, A;
Publication
JOURNAL OF MARINE SCIENCE AND ENGINEERING
Abstract
Some structures in the harbour environment need to be inspected regularly. However, these scenarios present a major challenge for the accurate estimation of a vehicle's position and subsequent recognition of similar images. In these scenarios, visibility can be poor, making place recognition a difficult task as the visual appearance of a local feature can be compromised. Under these operating conditions, imaging sonars are a promising solution. The quality of the captured images is affected by some factors but they do not suffer from haze, which is an advantage. Therefore, a purely acoustic approach for unsupervised recognition of similar images based on forward-looking sonar (FLS) data is proposed to solve the perception problems in harbour facilities. To simplify the variation of environment parameters and sensor configurations, and given the need for online data for these applications, a harbour scenario was recreated using the Stonefish simulator. Therefore, experiments were conducted with preconfigured user trajectories to simulate inspections in the vicinity of structures. The place recognition approach performs better than the results obtained from optical images. The proposed method provides a good compromise in terms of distinctiveness, achieving 87.5% recall considering appropriate constraints and assumptions for this task given its impact on navigation success. That is, it is based on a similarity threshold of 0.3 and 12 consistent features to consider only effective loops. The behaviour of FLS is the same regardless of the environment conditions and thus this work opens new horizons for the use of these sensors as a great aid for underwater perception, namely, to avoid degradation of navigation performance in muddy conditions.
2023
Authors
Barbosa, S; Dias, N; Almeida, C; Silva, G; Ferreira, A; Camilo, A; Silva, E;
Publication
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Abstract
Gamma radiation over the Atlantic Ocean was measured continuously from January to May 2020 by a NaI(Tl) detector installed on board the Portuguese navy's ship NRP Sagres. Enhancements in the gamma radiation values are identified automatically by an algorithm for detection of anomalies in mean and variance as well as by visual inspection. The anomalies are typically +50% above the background level and relatively rare events (similar to<10% of the days). All the detected anomalies are associated with simultaneous precipitation events, consistent with the wet deposition of scavenged radionuclides. The enhancements are detected in the open ocean even at large distances (+500 km) from the nearest coastline. Back trajectories reveal that half of these events are associated with air masses experiencing continental land influences, but the other half do not display evidence of recent land contact. The enhancements in gamma radiation very far from land and with no evidence of continental fetch from back trajectories are difficult to explain as resulting only from radionuclides with a terrestrial source such as radon and its progeny. Further investigation and additional measurements are needed to improve understanding on the sources of ambient radioactivity in the open ocean and assess whether gamma radiation in the marine environment is influenced not only by radionuclides of terrestrial origin, but also cosmogenic radionuclides, like Beryllium-7, formed in the upper atmosphere but with the ability to be transported downward and serve as a tracer of the aerosols to which it attaches. Plain Language Summary Radioactive elements such as the noble gas radon and those produced by its radioactive decay are naturally present in the environment and used as tracers of atmospheric transport and composition. In particular, the noble gas radon, being inert and of predominantly terrestrial origin, is used to identify pristine marine air masses with no land contamination. Precipitation over land typically brings radon from the atmosphere to the surface, enhancing gamma radiation on the ground, but such enhancements have not been identified before nor expected over the ocean due to the low amount of radon typical of marine air masses. Here we report, for the first time, gamma radiation enhancements associated with precipitation in the oceanic environment, using measurements performed over the Atlantic Ocean in a campaign onboard the Portuguese navy ship NRP Sagres.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.